

Sound attenuation by hearing aid earmold tubing

Comsol conference 2008

Mads J. H. Jensen Widex A/S, Denmark

Contents

- Motivation
- Modeling
 - Model setup
 - Theory ... hopefully not too many equations
 - Boundary conditions
- Results
- Conclusion

Motivation: why "sound attenuation"

- Introductory study in preparation for modeling a full hearing aid device
- Feedback in hearing aids:
 - Mechanical stability
 - Acoustic feedback:

Virtual measurement set-up

- Real attenuation = $L_{\text{tube}} L_0$
- Measured attenuation = $L_{\rm mic} L_0$

L. Flack, R. White, J. Tweed, D.W. Gregory, and M.Y. Qureshi Brit. J. of Aud., **29**, 237 (1995)

Model setup

Electric analogue to an acoustic system

$$\begin{array}{c|c} p_{a} & p_{b} \\ Q_{a} & Q_{b} \end{array}$$

$$\begin{bmatrix} p_a \\ Q_a \end{bmatrix} = \boldsymbol{Q} \begin{bmatrix} p_b \\ Q_b \end{bmatrix} \text{ where } \boldsymbol{Q} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

- An acoustic system may also be terminated by an acoustic impedance $Z_{\rm ac}$

$$Z_{ac} \qquad Z_{ac} = Z_{ac}(f) = \frac{\bar{p}}{Q}$$

For this model to hold we assume plane waves!

 Assuming harmonic variations a small parameter expansion of the Navier-Stokes, continuity, and the energy equation yields:

$$i\omega\rho_{0}\boldsymbol{u} = -\nabla p + (\lambda + \mu)\nabla(\nabla \cdot \boldsymbol{u}) + \mu\nabla^{2}\boldsymbol{u}$$
$$i\omega\left(\frac{p}{p_{0}} - \frac{T}{T_{0}}\right) = -\nabla \cdot \boldsymbol{u}$$
$$i\omega\rho_{0}C_{v}T = \kappa\nabla^{2}T - p_{0}\nabla \cdot \boldsymbol{u}.$$
$$p_{0} = R_{0}\rho_{0}T_{0}$$

Theory: elastic waves in solids

- Assuming small deformations in a solid
 - Momentum:

$$-\omega^2 \rho_0 U_i = \nabla_j \sigma_{ij}$$

• Stress (elastic) and strain tensor (linearized):

$$\sigma_{ij} = 2\mu_s \varepsilon_{ij} + \lambda_s \delta_{ij} \varepsilon_{kk} \qquad \varepsilon_{ij} = \frac{1}{2} (\nabla_i U_j + \nabla_j U_i)$$

Modeling losses Young's modulus is represented as

$$\tilde{E} = E(1 + \eta i)$$

FEM domain (axisymmetric)

measured properties of solid

- $\sigma = 0.45$ (Poisson ratio)
- $E = 4.1 \ 10^7 \ Pa$ (Young's modulus)
- $\eta = 0.019$ (loss factor)
- $\rho = 1220 \text{ kg/m}^3 \text{ (density)}$
- $\hat{E} = E(1 + \eta i)$ (complex Young's modulus)

other parameters

Frequency: f [Hz] Temperature: T [K] Atmospheric pressure: $p = 10^5$ Pa Density: ρ [kg/m^3] Speed of sound: c [m/s] Dynamic viscosity: μ [Pa·s] Heat conductivity: κ [W/(m · K)] Specific heat (@ const. p): Cp [J/(kg·K)] Ratio of specific heats: $\gamma = Cp/Cv$

Weak formulation for FEM and PML

Governing (fluid domain)

$$\begin{split} \int_{\Omega} \left[(i\omega \left(\frac{p}{p_0} - \frac{T}{T_0} \right) + \nabla_i u_i) \tilde{p} + i\omega \rho_0 u_j \tilde{u}_j + \\ \sigma_{ij} \nabla_j \tilde{u}_i + i\omega (\rho_0 C_p T - p) \tilde{T} + \kappa \nabla_i T \nabla_i \tilde{T} \right] \, dA = 0 \end{split}$$

Perfectly matched layer (PML, open boundary)

$$p = e^{i\omega - kx}$$
 $x \to a + bi$ $\tilde{p} = e^{i\omega - ka - bki}$
attenuated by the amount e^{-bki} .

$$\int_{\Omega} f(x_i, \frac{\partial}{\partial x_i}) dV \to \int_{\tilde{\Omega}} f(Z_{x_i}, \frac{\partial}{\partial Z_{x_i}}) d\tilde{V} = \int_{\Omega} f(Z_{x_i}(x_i), J_{ji}^{-1} \frac{\partial}{\partial x_j}) |J| dV.$$

AIBC: Inlet boundary condition

- Electroacoustic relation for BC
- Requires plane wave at inlet $\partial \Omega_e$
- Solve for the non-evanescent eigensolution u_e on inlet $\partial \Omega_e$
- Apply BC as weak constraint and scale *u* with Lagrange multiplier

$$\boldsymbol{u} - \lambda_1 \boldsymbol{u}_e = 0 \quad \text{on} \quad \partial \Omega_e$$

$$\int_{\delta_e} (V - A_{in} P_{in} / \alpha_{in} - B_{in} Q_{in}) \tilde{\lambda}_1 \, dP = 0$$

$$\partial \Omega_e \quad \mathbf{a}_e \quad \mathbf{a}_e$$

$$[\alpha_{in}, P_{in}, Q_{in}] = \int_{\partial \Omega_e} [1, p, \boldsymbol{u} \cdot \boldsymbol{n}] \, dA^*$$

$$\begin{matrix} V \\ I \end{matrix} = \begin{matrix} p \\ Q \end{matrix} = \begin{matrix} p \\ Q \end{matrix} = \begin{matrix} Z_{ac} \end{matrix}$$

Other BCs

Sound hard wall (isothermal):

$$\boldsymbol{u} = \boldsymbol{0} \quad \text{and} \quad T = 0$$

Solid fluid coupling (continuity of normal stress and displacement):

$$\boldsymbol{n}: \boldsymbol{\sigma} = \boldsymbol{n}: \boldsymbol{S}$$

 $\boldsymbol{u} = \frac{\partial \boldsymbol{U}}{\partial t} = i\omega \boldsymbol{U}$
 $T = 0$

Outlet BC as inlet BC (no source):

$$p = Q Z_{\rm ac}$$

Results: sound attenuation

Results: acoustic feedback

Conclusions

- 2D model to analyze sound radiation
- PML for thermoviscous acoustic system
- Coupling between electroacoustic model and FEM with AIBC
- Order of magnitude OK (Flack *et al.*)
- Attenuation is high for standard earmold tubing (> 80 dB)
- Feedback @ high frequencies? More detailed study needed.

 Some numerical effects/instabilities in the system – comments are welcome after the session!

