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This study is carried out to analyze the thermal

behavior of a 48 V high-power battery module

while implementing a passive cooling design and

an active cooling design. The ultimate goals are

suppression of overall temperature and

achievement of a homogenous temperature

distribution across the battery module. Regarding

modeling skills, minimization of the required

computing duration and improvement of the model

quality shall be achieved by employing suitable

simplifications and modified meshes.

Motivation
The employed passive cooling design contributes significantly to achieving homogeneous temperature distribution

across the battery module. Suppression of the average module temperature has been enhanced by involving

active water cooling since generated heat is transported away efficiently by the water flow. However, the

homogeneous temperature distribution worsened, which underlines the next task – maintaining the homogeneous

temperature distribution while suppressing the overall module temperature.

Conclusion

(1) - GM - A 48 V battery module containing 30

18650 cells, the Ground Model (GM), is

designed using software COMSOL Multiphysics®

(Fig. 1).

(2) - GM & ICF – A specific passive cooling design -

Internal Cooling Fin (ICF) - is added to GM as an

extension of the cover (Fig. 2).

(3) - GM & ICF & AFC - Active Fluid Cooling (AFC)

system (Fig. 3) is embedded in the cover of the

battery module. In this study water serves as

cooling fluid. Its temperature and velocity are

variable parameters (283.15 K and 0.1 m/s are

applied in the analyzed cases).

Concept

� Principle: Stationary FEM

� Scope: 3D, transient simulation

� Coupling of Non-Isothermal Flow:

Heat Transport Equation:
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Navier Stokes Equation:
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Figure 1: The 3D geometry of Ground 
Model (GM) with indispensable 
components of a battery module.
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Figure 3: Concept               
GM & ICF & AFC. The fluid 
channel is embedded in 
the cover.

Figure 2:            
Concept GM & ICF. 
ICFs are extensions 
of the cover.

Figure 7: Stationary average cell temperatures across the XY-plane. The numbers 
of cells are shown in Fig. 1.
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Figure 4: Temperature 
distribution of the cooling 
fluid at the maximum channel 
diameter on the XY-plane. 

Modeling Feature 
(1) - Temperature Probe – Domain Point Probesaa

are located at specified coordinates (x,y,z) to

define the fluid temperatures (Fig.3). Water is

warmed up by battery generated heat (Fig. 4).

(2) - Mesh – Customized mesh with a maximum

element size of 0.01 m and a minimum element

size of 0.001 m (Fig. 5). Free Tetrahedral aaand

Swept meshes are applied. Computing of the

mesh requires a physical memory of 12.9 GB.

The full mesh consists of 3 124 337 domain

elements, 552 777 boundary elements, and 44

487 edge elements. Boundary layers are

applied for both air and cooling fluid areas.

(3) - Auxiliary Sweep - By adding funktion Auxiliary

Sweep for parameter P_30cell (user-defined

total power of the battery module), the

stationary calculation is carried out

automatically for range(10,5,30) - 10 W, 15 W,

20 W, 25 W and 30 W. Fig. 7 illustrates the

average temperatures of the cells in all analyzed

cases.

Figure 5: The complete mesh of the 
battery module. Cover and case are 
not shown in the illustration.

Figure 6:                      
Volumetric temperature 
distribution of the 
battery module within 
COMSOL Multiphysics 
environment.
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