

COMSOL CONFERENCE

Birmingham

:iMETland

MODEL BASED STIMULUS EXPERIMENTS TO IMPROVE WASTEWATER TREATMENT USING ELECTRON CONDUCTIVE MATERIAL

Nga T.Q. Do¹, Michael Stich¹

¹ Non-linearity and Complexity Research Group System Analytics Research Institute School of Engineering and Applied Science, Aston University, Aston Triangle, B4 7ET Birmingham,

United Kingdom

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°642190.

iMETIand

COMSOL CONFERENCE

2017 ROTTERDAM - OCTOBER 18–20

Aston University

COMSOL CONFERENCE

2017 ROTTERDAM - OCTOBER 18–20

BIOKINETIC MODELS

24 components, 19 processes.

Aston University

CONSTRUCTED WETLAND MODEL (CWM1)

COMSOL CONFERENCE

2017 ROTTERDAM - OCTOBER 18–20

CWM1-KINETIC BEHAVIOR

Aston University

COMSOL CONFERENCE

2017 ROTTERDAM - OCTOBER 18-20

CWM1-ADJUSTED PARAMETER

🗢 c.a 0.1 day for completely treatment of fermentable products

 $m c \sim$ nitrogen and sulphur compounds are inefficiently treated

COMSOL CONFERENCE

2017 ROTTERDAM - OCTOBER 18–20

Aston University

BATCH MODE-0₂ DOSING

Maximizing aerobic condition improves nitrification process

COMSOL CONFERENCE

2017 ROTTERDAM - OCTOBER 18-20

BATCH MODE - S_{NH} AND S_A DOSING

hightarrow Recycling only S_{NH} and S_F compounds will not beneficial for the treatment

TAKE HOME MESSAGE

Input function u(t)State: sample compositionMeasured output y(t) $\dot{C}_{\alpha} = f(C_{\alpha}(t), u(t), \theta_x)$ $y(t) = f(C_{\alpha}(t), u(t), \theta_x)$ $y(t) = f(C_{\alpha}(t), u(t), \theta_x)$

- ➤ The best option can be obtained when dosing maximum O₂ into the system.
- Dosing additionally S_{NH}, S_F in the condition of adequateness of O₂ will not improve the system performance.
- Further development of 1D model incorporating the electrochemical performance of the system would be very valuable in the studied field.

