COMSOL

CONFERENCE
2017 ROTTERDAM

REACTIVE TRANSPORT MODELING OF CO,
IN CARBONATE ROCKS: SINGLE PORE MODEL

*Priyanka Agrawal, Amir Raoof, Oleg Illiev and
Mariette Wolthers

N O

A
N



AGENDA

Motivation

Single pore model
Results
Challenges

Conclusions



MOTIVATION

_ Single Pore Model IResults | Challenges | Conclusions |




MOTIVATION

_ ‘Calcite
Permeability yniperal growth/

dissolution

o I o om A

>

_ Single Pore Model IResults | Challenges | Conclusions |




MOTIVATION

_ ‘Calcite
Permeability yniperal growth/

dissolution

o I o om A

>

_ Single Pore Model IResults | Challenges | Conclusions |




MOTIVATION

_ ‘Calcite
Permeability yniperal growth/

dissolution

o I o om A

>

_ Single Pore Model IResults | Challenges | Conclusions |




SINGLE PORE MODEL
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SINGLE PORE MODEL

H*, HCO3-
‘ OH:, Ca®", CO3* Calcite saturated pore water

CO,+H,0 (pH = 9)

Outflow
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Surface reaction
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SINGLE PORE MODEL

Moving pore wall due to dissolution

Surface reaction
H+*, HCO3
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FLUID FLOW

Re<<1 ) Laminar Flow =) Stokes Eq

d
po + V.p = p(Aw)
V.u=20

Boundary Conditions:
Inlet: V(s)=Vmax*4x*sx*(1—y5)
Outlet: Constant pressure
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FLUID FLOW

fm . '
| Velocity profile at t=0s
60}
40+
20+
0-
-80k . : ! ' : : ]
0 50 100 150 200 Mm
s e e— < 107
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




SINGLE PORE MODEL

MULTIPHYSICS MODEL
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CHEMICAL REACTIONS

Solution Species W Equilibrium Reaction Keq

CO,(g) CO,(g) = CO,_aq 3.38%101-2
CO,_aq CO, aq+H,0 =H*+HCO, 107-6.35

H* HCO, = H* + CO,>2 4.69%107-11

OH H,0 = H*+ OH- 1.023%10~-14
CO,™ Reversible reaction on the surface of pore boundary
HCO4

Ca2+ CaCO3 ¢mmp Caz*+ CO,2

R aeite=(K1ams + Koacogag T Ka) ™ {1-[(acaes* 2003 ) Keol}
(Plummer et.al., 1978)
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TRANSPORT OF DILUTED SPECIES

Advection-Diffusion-Reaction controlled transport

dci , _ ,
Fralie V.(D.Vci) +u.Vci = Ri

Flux due to surface reaction
—n. (—Di.Vci + u.ci) = Rcalcite

Inflow Condition: Danckwerts flux condition
—n.(—=Di.Vci + u.ci) = u.coi
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MOVING BOUNDARY

Mesh velocity, due to dissolution of the calcite [=f(x,y)
or _,
ot 0 . |
= (Rcalate MV) 4 0 o S .
0 or oz o3 o4 v o6 07 08 08 1
1
R_.i.ito: Rate of calcite dissolution (mol m2s1)

MYV: Molar volume of calcite (m3mol)
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RESULTS

Average flow velocity = 1 um/s PV =0
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RESULTS

Average flow velocity = 1 um/s PV = 1620
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RESULTS

Average flow velocity = 1 pm/s PV = 3300
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RESULTS

After injection of same number of PV = 3300

pm s
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RESULTS

After injection of same number of PV = 3300

Concentration of Ca S
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RESULTS:

Normalized displacement profile along pore wall
for different flow velocity

2.4

2.2

A 100um/s

1.6 + 10um/s
5 \ m1um/s
Increasing flow
velocity

Normalized displacement

0 50 100 150 200 250 300

Distance along pore length .

Motivation Single Pore Model - Challenges | Conclusions |




CHALLENGES

Concentration gradient between pore fluid (pH
9.9) and injecting fluid (pH 4.4)

Flux based condition
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CHALLENGES

Concentration gradient between pore fluid (pH
9.9) and injecting fluid (pH 3.9)

Flux based condition

Concentration constraint condition
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CHALLENGES — FLUX BASED CONDITION

Time=0s Surface:

80: Fluid with pH 9.9 filled in both sections
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CHALLENGES - FLUX BASED CONDITION
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CHALLENGES - CONCENTRATION CONSTRAINT
CONDITION

Time=0s Surface:

80: Fluid with pH 9.9 filled in both sections
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CHALLENGES - CONCENTRATION CONSTRAINT
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CHALLENGES - CONCENTRATION CONSTRAINT
CONDITION

Time=0s Surface:

80: Fluid with pH 9.9 filled in both sections
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CHALLENGES - CONCENTRATION CONSTRAINT
CONDITION
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CHALLENGES

Concentration gradient between pore fluid (pH
9.9) and injecting fluid (pH 3.9)

High velocity impact on numerical stability

Pe = uxh > 1
2%D
Fine Mesh

Time dependent step function for
concentration of injecting fluid
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CONCLUSION

Uniform dissolution for high flow velocity and
non-uniform for low velocity

Low flow velocity dissolves more for the same
number of pore volumes

High flow velocity dissolves in same duration of
time.

COMSOL — A strong multiphysics solver to
couple moving boundary with reactions.
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