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Abstract: Numerical simulation tools offer the 

opportunity to ascertain characteristic values for 

fluid flows, which are difficult to measure. This 

work describes the examination of a turbulent 

flow in a Venturi tube using two different 

commercial CFD tools, namely COMSOL 

Multiphysics® and STAR-CCM+®. The 

simulation models are validated by 

experimentally determined measured data. 
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1. Introduction 

Nowadays, a common problem in engineering is 

to ascertain characteristic values of technical 

systems. Real measurements may not be 

performed due to high costs or the difficulty to 

measure without producing disturbances in a 

system. In such cases simulation tools can provide 

the desired results. COMSOL Multiphysics® is a 

suitable tool for modeling physics-based 

problems using the finite element method (FEM). 

STAR-CCM+® instead is based on the finite 

volume method (FVM). Both tools can be used 

for CFD problems in the laminar as well as in the 

turbulent regime. Different turbulence models are 

provided for different applications. 

 

The Venturi effect is a well-known phenomenon 

in fluid mechanics. Many industries developing 

equipment and machines take advantage of the 

Venturi effect; for example, carburetors, 

atomizer, nebulizer, and sprayers. Automated 

pool cleaners use the Venturi effect to draw debris 

and sediment into collection tubes. Sand blasters 

also utilize the low-pressure area created by 

flowing air to suck sand into their systems and 

mix it with the flow. 

Besides these applications the Venturi effect is 

also used in scientific laboratories and in 

industrial applications for measuring the flow rate 

of fluids. Volume flows can be determined by 

using Bernoulli’s equation and the differential 

pressure between the narrowest and the largest 

cross section (Fig. 1).  

 

 
Figure 1. Measurement of a volume flow using a 

Venturi nozzle. [1] 

 

 

2. Set-up 

2.1 Experimental Set-up 

 

A Venturi tube is built up in the Laboratory for 

Fluid Mechanics at the Bielefeld University of 

Applied Sciences. Pressure sensors are used to 

measure the pressure difference between the 

narrowest and the widest cross section of the tube 

for different flow velocities. This data is used to 

validate the CFD simulations. A characteristic 

curve for the system can be ascertained by the 

relation between the differential pressure and the 

flow velocity.  

The experimental assembly consists of the union 

of 3 separate tubes with a total length of 4.4 𝑚. 

The first part is a tube with an internal diameter of 

0.1 𝑚 and a length of 2.0 𝑚. The following part 

is the Venturi tube, which is 0.4 𝑚 long with an 

internal diameter of 0.05 𝑚 at the narrowest cross 

section in the middle of the tube. The third part is 

equivalent to the first one.  

At one end of the tube a fan is mounted which can 

produce air flows with variable flow velocities. In 

the following figure 2 the complete test set-up is 

shown. 
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Figure 2. Experimental set-up in the Laboratory for 

Fluid Mechanics at the Bielefeld University of Applied 

Sciences 

 

As figure 3 illustrates, differential pressures can 

be measured between seven different points at the 

outer contour of the Venturi tube. The difference 

between the low pressure in the middle of the tube 

(p-4) and the higher pressure at the inlet (p-1) and 

the outlet (p-7) are of special interest in this work. 

Between two neighbouring measuring points the 

distance equals 6.3 𝑐𝑚, respectively. 

 

 
Figure 3. Venturi tube with connected pressure 

measuring pipes  

2.2 Model Set-up 

 

In both simulation tools a 2D axis symmetrical 

model is developed. The outside contour is built 

by applying a parametric curve utilizing a cosine 

function:  

 

𝑟(𝑧) = 0.0125 𝑚 cos (
2𝜋

0.32 𝑚
𝑧) 

+ 0.0375 𝑚 
(1) 

 

Figure 4 shows the contour of the Venturi tube in 

COMSOL Multiphysics®. The red line is the 

symmetry axis. Figure 5 displays the entire 

geometry of the Venturi model similar to the 

experimental set-up. 

 
Figure 4. Contour of the Venturi tube 

 

 

 
Figure 5. Complete geometry model of the Venturi 

tube 

 

We use a fine mapped quadrilateral mesh with 

additional boundary layers in both simulation 

programs. A mesh study was performed, to find a 

suitable mesh for the used turbulence models in 

both tools. Finally, a quadrilateral mesh with 3000 

elements in axial direction and 30 elements in 

radial direction with 10 additional boundary 

layers is used for the comparison between the 

numerical and experimental results.  

In COMSOL Multiphysics® a finite element mesh 

and in STAR-CCM+® a finite volume mesh is 

used. Figure 6 displays the comparison between 

both discretisations of the fluid domain. 

 

 
Figure 6. FE mesh in COMSOL Multiphysics® (left 

side) and FV mesh STAR CCM+® (right side) 
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3. Governing Equations 
 

In this model, the turbulent air flow is assumed to 

be incompressible and isothermal. Furthermore, 

only stationary flow problems for various flow 

velocities are solved. 

The continuity equation [2] simplifies to  

 

∇ ⋅ 𝒖 = 0 (2) 

 

and the Navier-Stokes equations to 

 

𝜌(𝒖 ⋅ ∇)𝒖 = 

∇ ⋅ [−𝑝𝑰 + (𝜇 + 𝜇
𝑇
)(∇𝒖 + (∇𝒖)𝑇)] + 𝑭 

(3) 

 

For the turbulent, single phase flow simulation the 

𝑘-𝜀 and the 𝑘-𝜔 turbulence models are used. At 

first the equations for the 𝑘-𝜀 model are described.  

 

3.1 𝒌-𝜺 Turbulence Model 

 

The time independent transport equation for the 

turbulent kinetic energy 𝑘 is defined as follows: 

 
𝜌(𝒖 ⋅ ∇)𝑘 = 

∇ ⋅ ((𝜇 +
𝜇𝑇

𝜎𝑘

) ∇𝑘) + 𝑃𝑘 − 𝜌𝜀 

(4) 

 

with the turbulent viscosity 

 

𝜇𝑇 = 𝜌𝐶𝜇

𝑘2

𝜀
 

 

and the production term 

 

𝑃𝑘 = 𝜇𝑇(∇𝒖: (∇𝒖 + (∇𝒖)𝑇)). 

 

The time independent transport equation for the 

turbulent dissipation rate 𝜀 can be written as: 

 

𝜌(𝒖 ⋅ ∇)𝜀 = 

∇ ⋅ ((𝜇 +
𝜇𝑇

𝜎𝜀

) ∇𝜀) + 𝐶𝜀1

𝜀

𝑘
𝑃𝑘 − 𝐶𝜀2𝜌

𝜀2

𝑘
 

 

(5) 

The 𝑘-𝜀 model constants are predefined by default 

as [2]: 
 

𝐶𝜀1 = 1.44;     𝐶𝜀2 = 1.92;     𝐶𝜇 = 0.09; 

𝜎𝑘 = 1;     𝜎𝜀 = 1.3 

3.2 𝒌-𝝎 Turbulence Model 

 

The equations for the 𝑘-𝜔 turbulence model are 

quite similar to the 𝑘-𝜀 model equations.  

The time independent transport equation for the 

turbulent kinetic energy 𝑘 reads: 

 
𝜌(𝒖 ⋅ ∇)𝑘 = 

 

∇ ⋅ ((𝜇 + 𝜇𝑇𝜎𝑘
∗)∇𝑘) + 𝑃𝑘 − 𝛽0

∗𝜌𝜔𝑘 

 

(6) 

For solving the specific turbulence dissipation 

rate 𝜔, the following equation is used: 
 

𝜌(𝒖 ⋅ ∇)𝜔 = 

∇ ⋅ ((𝜇 + 𝜇𝑇𝜎𝜔)∇𝜔) + 𝛼
𝜔

𝑘
𝑃𝑘 − 𝜌𝛽0𝜔2 

(7) 

 

with the kinematic eddy viscosity 

 

𝜇𝑇 = 𝜌
𝑘

𝜔
 

 

and again the production term  

 

𝑃𝑘 = 𝜇𝑇(∇𝒖: (∇𝒖 + (∇𝒖)𝑇)). 

 

The 𝑘-𝜔 model constants are predefined with the 

following values [2]: 

 

𝛼 =
13

25
;     𝜎𝑘

∗ = 0.5;      𝜎𝜔 = 0.5; 

𝛽0 =
9

125
;       𝛽0

∗ = 0.09 

 

In both simulation tools these predefined model 

constants are used unmodified in all studies.  

 

3.3 Model Input 

 

The constant density 𝜌 = 1.18415
𝑘𝑔

𝑚3 and the 

dynamic viscosity 𝜇 = 1.85508 ∙ 10−5 𝑃𝑎 𝑠 are 

defined as the material properties for the fluid. 

The boundary condition “Velocity Inlet” is 

chosen at 𝑧 = −2 𝑚, i.e. the normal inflow 

velocity is defined with a constant value. The 

“Pressure Outlet” boundary condition is located 

opposite to the inlet at 𝑧 = 2.4 𝑚.  Here, the 

relative pressure is set to 𝑝 = 0 𝑃𝑎, which means 

the prevalent pressure equals the atmospheric 
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pressure. For the walls a “No-slip” condition is 

defined. 

As initial conditions for the flow region, the 

relative pressure is set to 𝑝0 = 0 𝑃𝑎, the turbulent 

kinetic energy to 𝑘0 = 0.001
𝑚2

𝑠2 , and the 

turbulent dissipation rate to 𝜀0 = 0.001
𝑚2

𝑠3  and 

accordingly the specific dissipation rate to 

𝜔0 = 1
1

𝑠
. In addition, the initial velocity is set 

according to the constant inlet velocity.  

A parametric sweep for the inlet velocity in the 

range from 0.1
𝑚

𝑠
 up to 7.2

𝑚

𝑠
 by steps of 0.1

𝑚

𝑠
 is 

performed. This range of fluid velocities 

corresponds to Reynolds numbers from 638 to 

45960. The transition from laminar to turbulent 

flow in a pipe occurs at Reynolds numbers about 

2300. In our Venturi tube test set-up this transition 

is met for velocity values between 0.3
𝑚

𝑠
 and 

0.4
𝑚

𝑠
. 

 

 

4. Results 

 
4.1 Experimental Results 

 

The pressure distribution in the Venturi tube is a 

characteristic function of the average flow 

velocity respectively the volume flow rate.  It 

would be straight forward to validate the CFD 

models by comparison between the calculated and 

the measured pressure-velocity characteristic. 

Since the average flow velocity is not known in 

the present set-up, this approach can not be 

applied. As an alternative, we determine the 

differential pressure Δ𝑝7 (between p-7 and p-4, cf. 

Fig. 3) as a function of the differential pressure 

Δ𝑝1 (between p-4 and p-1, cf. Fig. 3) 

experimentally as well as numerically in order to 

validate our CFD models.  

In figure 7 the relation between the differential 

pressures at the outlet Δ𝑝7 and at the inlet Δ𝑝1 for 

various velocities is shown. For each adjusted air 

flow velocity at the inlet 60 measurements are 

performed. For each series of measurements an 

error indicator is obtained by calculating the 

standard deviation. The data shows an increasing 

variation for higher velocities. The obvious 

interpretation is that the flow is not stationary 

and/or does not show axis symmetrical behaviour 

any longer for very high Reynolds numbers. 

 
Figure 7. Relation between the differential pressures at 

the inlet and outlet of the Venturi tube. The blue points 

represent the measured values for various flow 

velocities. 

 

4.2 Simulation Results  

 

Numerous simulations using the 𝑘-𝜀 as well as the 

𝑘-𝜔 turbulence model were performed in 

COMSOL Multiphysics® (Version 5.2a) and 

STAR-CCM+® (Version 12.04.010). All results 

differ on the one hand, but on the other hand the 

distribution of the dependent variables (velocity, 

pressure, turbulent kinetic energy, etc.) look quite 

similar.  

In this section different COMSOL plots for the  

𝑘-𝜀 turbulence model for a mean velocity of  6
𝑚

𝑠
 

are shown exemplary. 

 

 
Figure 8. Velocity distribution in the Venturi tube 

(Unit: [
𝑚

𝑠
]) 

 

Figure 8 shows the velocity distribution. This 3D 

plot expresses the intensity of the velocity in the 
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horizontal Venturi tube. The flow enters from the 

left with an even distribution of the velocity 

intensity. At the constriction, the velocity of the 

fluid is tripled, so that the flow separates after it 

passes the constriction.  

The following plots are displayed in the 𝑟-𝑧-

plane, so that the fluid flows in positive 𝑧-

direction from bottom to top. Figure 9 is a 

streamline plot of the velocity in a region behind 

the constriction. 

 

 
Figure 9. Streamlines behind the constriction  

(Unit: [
𝑚

𝑠
]) 

 

Figure 10 presents the pressure distribution in the 

Venturi tube. Upstream of the constriction the 

relative pressure is higher than in the middle of it. 

The reason for this is the increasing velocity to the 

middle of the constriction (cf. Fig. 8). Behind the 

constriction, the pressure rises continuously to 

atmospheric pressure.  

 

 
Figure 10. Pressure distribution in the Venturi tube  

(Unit: [𝑃𝑎]) 

 

In figure 11 the distribution of the turbulent 

kinetic energy is shown, which describes the 

dimension of the turbulent fluctuations in a 

turbulent flow. As expected, the maximum of the 

turbulent kinetic energy is behind the constriction. 

 

 
Figure 11. Turbulent kinetic energy distribution behind 

the constriction (Unit: [
𝐽

𝑘𝑔
]) 

 

4.2.1 Comparison Between the 𝒌-𝜺 Turbulence 

Models and the Measured Data 

 
Figure 12 shows the averaged values from the 

measured differential pressures and the 

simulation results from COMSOL Multiphysics® 

and STAR-CCM+® using the standard 𝑘-𝜀 

turbulence model. 

 

 
Figure 12. Comparison between the simulation results 

with COMSOL Multiphysics® and STAR-CCM+® and 

the measured values.  
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The numerical results from both simulation tools 

are close to the measured values, especially for 

differential pressures Δ𝑝1 < 150 𝑃𝑎. In general, 

the slope of the curve representing the COMSOL 

results is more steep than the one for the STAR 

results.  In addition, the COMSOL results deviate 

more from the measured values for higher 

differential pressures Δ𝑝1.  

 

4.2.2 Comparison Between the 𝒌-𝝎 

Turbulence Models and the Measured Data 

 

 
Figure 13. Comparison between the simulation results 

with COMSOL Multiphysics® and STAR-CCM+® and 

the measured values. 

 

Using the 𝑘-𝜔 turbulence model the simulation 

results from COMSOL Multiphysics® as well as 

STAR-CCM+® are in good agreement with the 

measured data for a larger range of the differential 

pressures in contrast to the 𝑘-𝜀 turbulence model 

results. Both curves (cf. Fig. 13) lie slightly above 

the experimentally measured values for Δ𝑝1 <

150 𝑃𝑎 and slightly below the values for Δ𝑝1 >

150 𝑃𝑎. 

 

4.3 Characteristic Curve for the Venturi Tube 

 

In this case, the 𝑘-𝜔 turbulence model results are 

superior to those obtained from the 𝑘-𝜀 turbulence 

model. Thus, the 𝑘-𝜔 results are used to 

determine the characteristic curve for the Venturi 

tube used in the experimental test set-up.  

The characteristic curve, which indicates the 

average flow velocity as a function of the 

differential pressure Δ𝑝1, is shown in Figure 14.  

 
Figure 14. Characteristic curve for the Venturi tube 

 

This curve can be fitted by the following root 

function quite well (cf. Fig. 14): 

 

𝑢 = 0.32
𝑚

𝑠
 √Δ𝑝1

1

𝑃𝑎
 (8) 

 

Figure 15 presents the characteristic curves which 

are obtained from the results from COMSOL 

Multiphysics®, STAR-CCM+® and by using 

Bernoulli’s equation.  

Again, the curves from the simulations tools are 

very close to each other, while the velocity values, 

which are obtained from Bernoulli’s equation, are 

higher, especially at higher differential pressures, 

as expected. In contrast to the laminar state the 

turbulence increases the drag in the flow. 

Therefore, a higher pressure gradient is needed to 

reach a certain velocity.  
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Figure 15. Characteristic curves from COMSOL 

Multiphysics®, STAR-CCM+® and Bernoulli’s 

equation 

 

  

5. Conclusion 
 

As a conclusion, both commercial CFD tools, i.e. 

COMSOL Multiphysics® and STAR CCM+®, are 

suitable for the simulation of the flow in the 

Venturi tube. The simulation results are in good 

agreement with experimentally determined 

measured data. In the case under consideration the 

𝑘-𝜔 turbulence model results are closer to the 

measured data for a larger range of the differential 

pressures in comparison to the 𝑘-𝜀 model results. 

Nevertheless, both turbulence models show 

deviations for very high Reynolds numbers. From 

the variations in the experimental measurements 

for high velocities can be concluded that the 

assumptions of 2D axis symmetric and stationary 

flow are not fulfilled in those cases.  

Furthermore, we have shown, that the 

characteristic curve for the Venturi tube can be 

determined by simulation instead of time 

consuming and expensive measurements. 

The necessity for full 3D and/or unsteady 

modelling or alternative turbulence models will 

be topic of further projects.  
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