Multiphysics Simulation of Micro-Thermoelectric Generators **Based on Power Factor Optimized Materials**

V. Barati, H. Reith, D. A. Lara, G. Li, G. Schierning, K. Nielsch Leibniz Institute for Solid State and Material Research, Dresden, Germany Contact: v.Barati@ifw-Dresden.de

Motivation:

- Micro thermoelectric generators (µTEG) convert heat direct into electrical energy [1]
- Promising candidates for autonomous sensors (IoT)
- Design optimization for max. Power output by COMSOL Multiphysics®

Results:

- Design study with varied heating power was performed at a single leg pair
- Study of the parasitic heat in the substrate (heat sink condition)
- Influence of the contact film be can neglected
- Min. Voltage for DC/DC converter~10mV

Computational Methods [2]:

Heat transfer: $\rho C_P \frac{\partial T}{\partial t} + \nabla Q = Q$, $q = -k\nabla T$ Electronic Currents (ec): $\nabla J = 0$, $J = \sigma E + J_e$, $E = -\nabla V$ Thermoelectric effect: q = PJ, $P = \alpha T$, $J_e = -\sigma \alpha T$

achived with 25 pairs leg be can (Demonstrated case)

Figure 2. Schematic setup of a μ TEG with boundary conditions

Parametric sweep of the load resistor (R_{load}) to determine the optimal power output.

 $R_{load} = R_{internal}$

Figure 5. power and voltage- Current of μ TEG

Conclusions:

- Utilizing of COMSOL® to analyze temperature and electrical characteristic of µTEG
- design finite element model allows a A

Material	Dimensions	Electrical	Thermal	Seebeck
	[µm]	conductivity	conductivity	coeff.
CuNi	50x50x20	2.0E6 S/m	22 W/mK	-41 µV/K
Sb	40x50x20	2.6E6 S/m	25.5 W/mK	32 µV/K
Au	40x50x3 40x50x10	4.88E7 S/m	319 W/mK	6.5 µV/K
Si	300x210x150	_	130 W/mK	_

Table 1. material properties used in simulation

optimization as well as a development of best practices for the manufacture of the μTEG .

References:

- Goldsmid, H. J., Introduction to Thermoelectricity, Springer (2010)
- COMSOL Multiphysics 5.3 Documentation, 2. www.comsol.com

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam