Expanding Your Materials Horizons

Roger W. Pryor, Ph.D., VP Research Pryor Knowledge Systems, Inc.

Electrical Impedance Tomography (EIT) EIT is a Non-Invasive Methodology developed for the Measurement of Differential Impedance and Void Detection.

Roger W. Pryor, Ph.D.

Examples of these independently developed methodologies are:

1. Medical Imaging (electrical impedance tomography {EIT})

Examples of these independently developed methodologies are:

- 1. Medical Imaging (electrical impedance tomography {EIT})
- 2. Geophysics (electrical resistivity tomography {ERT} or electrical resistivity imaging {ERI})

Examples of these independently developed methodologies are:

- 1. Medical Imaging (electrical impedance tomography {EIT})
- 2. Geophysics (electrical resistivity tomography {ERT} or electrical resistivity imaging {ERI})
- 3. Civil Engineering (electrical resistance tomography)

Roger W. Pryor, Ph.D.

Examples of these independently developed methodologies are:

- 1. Medical Imaging (electrical impedance tomography {EIT})
- 2. Geophysics (electrical resistivity tomography {ERT} or electrical resistivity imaging {ERI})
- 3. Civil Engineering (electrical resistance tomography)
- 4. Industrial Processes (possibly other acronyms)

The problem of diverse reference sources with different acronyms (names) in different disciplines is commonly found in many of the disciplines that employ mathematical modeling and simulation.

In this presentation, EIT is chosen as the demonstrative modeling methodology area.

Consider the following diverse reference sources typically employed for the acquisition of materials properties data.

1. The Literature (manual search procedure, manual data entry)

- 1. The Literature (manual search procedure, manual data entry)
- 2. Handbooks (manual search procedure, manual data entry)

- 1. The Literature (manual search procedure, manual data entry)
- 2. Handbooks (manual search procedure, manual data entry)
- 3. Proprietary Handbooks On-line (manual acquisition, manual data entry)

- 1. The Literature (manual search procedure, manual data entry)
- 2. Handbooks (manual search procedure, manual data entry)
- 3. Proprietary Handbooks On-line (manual acquisition, manual data entry)
- 4. Open Non-Proprietary Materials Properties Websites (manual acquisition, manual data entry)

- 1. The Literature (manual search procedure, manual data entry)
- 2. Handbooks (manual search procedure, manual data entry)
- 3. Proprietary Handbooks On-line (manual acquisition, manual data entry)
- 4. Open Non-Proprietary Materials Properties Websites (manual acquisition, manual data entry)
- 5. Proprietary Databases On-line (manual data entry, in most cases) Matweb (direct data search, COMSOL library file creation and entry)

- 1. The Literature (manual search procedure, manual data entry)
- 2. Handbooks (manual search procedure, manual data entry)
- 3. Proprietary Handbooks On-line (manual acquisition, manual data entry)
- 4. Open Non-Proprietary Materials Properties Websites (manual acquisition, manual data entry)
- 5. Proprietary Databases On-line (manual data entry, in most cases) Matweb (direct data search, COMSOL library file creation and entry)
- 6. Proprietary COMSOL Materials Library (direct data selection)

- 1. The Literature (manual search procedure, manual data entry)
- 2. Handbooks (manual search procedure, manual data entry)
- 3. Proprietary Handbooks On-line (manual acquisition, manual data entry)
- 4. Open Non-Proprietary Materials Properties Websites (manual acquisition, manual data entry)
- 5. Proprietary Databases On-line (manual data entry, in most cases) Matweb (direct data search, COMSOL library file creation and entry)
- 6. Proprietary COMSOL Materials Library (direct data selection)
- 7. Proprietary PKS-MPD Materials Properties Database (direct data search, COMSOL library file creation and entry)

1. Potential Frequency Range 1 Hz - 10¹⁰ Hz

- 1. Potential Frequency Range 1 Hz 10¹⁰ Hz
- 2. Mammalian Species:Human, Bovine (Cow), Ovine (Sheep), etc.

- 1. Potential Frequency Range 1 Hz 10¹⁰ Hz
- 2. Mammalian Species:Human, Bovine (Cow), Ovine (Sheep), etc.
- 3. Types of Tissue: Muscle, Lung, Heart, etc.

- 1. Potential Frequency Range 1 Hz 10¹⁰ Hz
- 2. Mammalian Species:Human, Bovine (Cow), Ovine (Sheep), etc.
- 3. Types of Tissue: Muscle, Lung, Heart, etc.
- 4. Materials and Tissue Properties: Conductivity, Density, Permeability, Permittivity, Resistivity, etc.

COMSOL Multiphysics First Principles EIT Ovine Lung Function Model

Roger W. Pryor, Ph.D.

- 1. Frequency 1×10^4 Hz.
- 2. Mammalian Species: Ovine (Sheep).
- 3. Types of Tissue: Muscle, Lung.
- 4. Inorganic Materials: Air.
- 5. Materials and Tissue Properties: Conductivity, Permittivity
- 6. Temperature of Property Value Measurement

Roger W. Pryor, Ph.D.

This EIT Model Subdomain Space

- 1. In this EIT Model, Subdomain Regions (muscle, lung, air) are not defined geometrically.
- In this EIT Model, Subdomain Regions (muscle, lung, air) are defined logically through the use of a set of Scalar Equations.
- 3. Defining the Subdomain Parameters logically reduces the model's geometrical complexity and eliminates the need to use ALE (moving mesh) techniques.

Roger W. Pryor, Ph.D.

EIT Ovine Lung Function Model Single Geometric Subdomain

Roger W. Pryor, Ph.D.

EIT Ovine Lung Function Model Single Geometric Subdomain Materials Properties Data Retrieval

Consider the following reference source (PKS-MPD) employed for the acquisition of this model's materials properties data.

This source generates and exports a file for the selected materials properties matched to the COMSOL Version (e.g. 3.5a) that can imported directly into the COMSOL Model's Material Library through the Add Library function.

Roger W. Pryor, Ph.D.

EIT Ovine Lung Function Model

Tissue Relative Permittivity Retrieval

The Materials Information Society
OR NOT
5
Remove
4
2
5

Roger W. Pryor, Ph.D.

EIT Ovine Lung Function Model

Tissue Electrical Conductivity Retrieval

00					PKS-MPD				
Ř		U Exit	View Selected Properties Pr	Generate operties Repor	Export to File	View Export Log	Clear All Selections	Instruc- tions	The Materials
Sele	ect a prop	erty fro	om the list:	inaccinal type	compositio	other ena			
Electri	ical Condu	ctivity (sigma)		+				
Value	Range Sel	ection:							
	Min.		Max.	Select a un	it of measure:				OR
Value:	6.0000)e-2	4.0000e-2	UOM	S/m				O NOT
то:	3.5000	e+1	4.0000e+1	degC	•				
Freq:	9.5000	e+3	1.0500e+4	Hz					Add to Search
electio	on Criteria:						Materials Sele	cted :	5
No.	Field	Ор			Criteria			Count	Remove
1 T	Гуре		Tissue		5 - 5 - 50 - 50 - 50 - 50 - 50 - 50 - 5			7	4
3 C	Other	AND	Name @muscle@						2
		OD	Name @lung@						3
4 C	Other	UK							
4 (Other	UK							
4 (Other	UK							

Roger W. Pryor, Ph.D.

EIT Ovine Lung Function Model

Air Relative Permittivity Retrieval

00		PKS-MPD				
	Exit	View Selected Properties Properties Report New File Clear All Selections	Instruc- tions	The Materials		
Select a	property fr	Property Material Type Composition Other Characteristics				
Select a	property in	¢				
□ Specify selection criteria for this property ● AND ○ OR ○ NOT Add to Search						
election Cri	iteria:	Materials Sel	ected :	1		
No. Fie	eld Op	Criteria	Count	Remove		
1 Type		Gas	29			
2 Other	AND	Name @air@	33			
2 Decre	rty AND	Relative permittivity (epsilonr)	452			
3 Prope						

Roger W. Pryor, Ph.D.

EIT Ovine Lung Function Model, Constants Values Table

Selected Materials Properties, Variables and Values

Variable	Value	Parameter	
sig_m	0.3621[S/m]	Muscle conductivity	
eps_r_m	3.043e4	Muscle relative permittivity	
x_0	0.0[m]	x position of cavity center	
y_0	0.0[m]	y position of cavity center	
r_0	0.05[m]	Cavity radius	
t_0	0.0[s]	Time init	
sig_L	0.06366[S/m]	Lung inflated conductivity	
eps_r_L	1.634e4	Lung inflated relative permittivity	
freq_01	1.0e4[Hz]	Frequency	
sig_air	1e-15 [S/m]	Conductivity of air	
eps_r_air	1	Relative permittivity of air	

Roger W. Pryor, Ph.D.

EIT Ovine Lung Function Model Scalar Equations Table

Equation	Value	Parameter
sigma_0	$(sig_m^*(((x-x_0)^2+(y-y_0)^2)>r_00^2))+ (sig_L^*(r_00^2)=((x-x_0)^2+(y-y_0)^2)>=r_02^2))+ (sig_air^*(((x-x_0)^2+(y-y_0)^2)< r_02^2))$	Model conductivity
epsilon_r_0	$\begin{array}{c} 1+(eps_r_m-1)*(((x-x_0)^2+(y-y_0)^2)>r_00^2)+\\ (eps_r_L-1)*(r_00^2>=((x-x_0)^2+(y-y_0)^2)>=r_02^2)+\\ (eps_r_air*(((x-x_0)^2+(y-y_0)^2)< r_02^2)) \end{array}$	Model permittivity
r_00	r_0*(1.4-cos((t_0[1/s]*pi)/8))/2	Lung Outer Wall Radius
r_02	r_00-0.01	Lung Inner Wall Radius

This EIT Model Subdomain Settings

00	Subdomain Setting	s – In-Plane Electric C	urrents (emqvw)	
Equation				
$-\nabla \cdot d((\sigma + j\omega\epsilon_0\epsilon_r)\nabla V - J^e) = dQ_j$				
Subdomains Groups	Phys	sics Infinite Elements	Forces Init	Element Color
Subdomain selection Material properties and sources				
1	Library material:			
Constitutive relation				
	D = ε ₀ ε _r E	$\bigcirc D = \epsilon_0 E + P$	\bigcirc D = ϵ_0	$\epsilon_r \mathbf{E} + \mathbf{D}_r$
	Quantity	Value/Expression	Unit	Description
	Je	0 0	A/m ²	External current density
	Qj	0	A/m ³	Current source
	d	1	m	Thickness
Group:	σ	sigma_0	S/m	Electric conductivity
Select by group	٤٢	epsilon_r_0		Relative permittivity
🗹 Active in this domain				
		Н	alp Apply	Cancel OK

Roger W. Pryor, Ph.D.

This EIT Model Boundary Settings

Boundary	Setting		
1,4,5,8 (blue)	Electrical Insulation		
2,3 (green)	Port		
6,7 (red)	Ground		
Port Tab	Setting		
Port Number	1		
Input property	Fixed current density		
Use port as input	Check Checkbox		
Input current	1e-4 [A]		

Roger W. Pryor, Ph.D.

This EIT Model Boundary Settings, Graphic

Roger W. Pryor, Ph.D.

This EIT Model Meshing and Solution

- 1. Model meshed with a size limit of 0.001, using a Triangle (advancing front) mesh.
- 2. Model solved with Parametric Solver on t_0, range(0,32/32,32).

This EIT Model Solution Graphic Single Solution, Maximum Inflation

Roger W. Pryor, Ph.D.

This EIT Model Solution Graphic Cross-Section Plots

This EIT Model Solution Movie

QuickTime[™] and a decompressor are needed to see this picture.

Roger W. Pryor, Ph.D.

Thank You!

Roger W. Pryor, Ph.D.