

Full wave simulation of LH waves based on finite element method

Orso Meneghini Syun'ichi Shiraiwa

Massachusetts Institute of Technology Plasma Science and Fusion Center

- Confinement via closed magnetic field lines (toroidal topology)
 - Charged particles (e-, i+) follow the magnetic field lines
- Helical field is needed for confinement
 - Current flowing in the plasma is induced with the transformer principle
 - Inherently a pulsed device!

- Slow wave launching structures
 - Grill of phased waveguide
 - Traveling wave structures
- Upcoming LH system
 - 16x4 waveguides
 - 60mm X 7mm
 - 1.4MW @ 4.6GHz

- Cold plasma simulations with COMSOL have been extensively verified
 - e.g. by comparing coupling coefficients versus TOPLHA code

- Modeling LH by ray tracing has several long-standing issues
 - WKB requires ∆K/K<<1 which for LH waves in Tokamak plasmas is questionable...
 - at low densities (small Kperp)
 - in fast changing density (big ΔK)
 - near cutoffs (P \rightarrow 0)
 - near caustics $(|K_{R}| \rightarrow 0)$
 - Ambiguity in the launched spectrum
 - Ray has to start inside the cutoff
 - Finite height of waveguide
- There are two approaches to full wave simulations
 - Wave-number domain approach (e.g. TORIC, AORSA)
 - Real space domain... what I am going to present
- A full-wave 3D calculation of the whole torus is still too computationally demanding... (λ~1mm, plasma size~1m³)

- Launching waves from an infinite number of infinitesimally thin phased waveguides
 - Spectrum is a δ function at given n
- Exploit this idea to do single toroidal mode decomposition in a 3D FEM solver
 - Model a single toroidal section having finite thickness
 - Periodic boundary condition at the sides of the toroidal slice
 - Phase relation between the solution on the sides of slice determines n₁₁
 - Spectrum approaches a δ function as thickness $\rightarrow 0$

|4i7

- Alcator C plasma
 - a=0.17 [m]
 - R₀=0.64 [m]
 - f = 4.6 [GHz]
 - n_{||}= 2.5
 - $-B_0 = 8 [T]$
 - Parabolic profiles
 - n_{e0} = 5E19[m⁻³]
 - I_P = 400 [KA]
- Wave damping is introduced through collisions
- ELD is necessary for correct evaluation of wave damping

Comparison of full wave electric field and ray tracing trajectory

Algebraic equation in the wavenumber domain $\vec{k} \times \left(\vec{k} \times \vec{E}(\vec{k})\right) + \frac{\omega^2}{c^2} \bar{\bar{\varepsilon}}_{LH}(\vec{k}) \cdot \vec{E}(\vec{k}) = 0$ LH dielectric tensor: cold plasma + electron Landau damping $\bar{\bar{\varepsilon}}_{LH} = \bar{\bar{\varepsilon}}_{cold} - i\bar{\bar{\varepsilon}}_{L} = \begin{pmatrix} S & -iD & 0\\ iD & S & 0\\ 0 & 0 & P \end{pmatrix} - i\begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & \varepsilon_{L}(k) \end{pmatrix}$ $-\varepsilon_{\rm L}(k_z) = \sqrt{\pi} \frac{\omega_{\rm pe}^2 \omega}{|k_z|^3 v_z^3} \exp\left(-\frac{\omega^2}{k^2 v_z^2}\right) \quad \text{(Maxwellian)}$ An integro-differential equation in real space $\nabla \times (\nabla \times \vec{E}(\vec{x})) + \frac{\omega^2}{c^2} \left(\bar{\bar{\epsilon}}_{cold} \cdot \vec{E}(\vec{x}) - i \frac{\hat{z}}{\sqrt{2\pi}} \int \epsilon_{\rm L}(z - z') E_z(z') dz' \right) = 0$ $\mathbf{E}_{\mathrm{L}}(z) = \frac{1}{\sqrt{2\pi}} \int \mathbf{\varepsilon}_{\mathrm{L}}(k_z) e^{-ik_z z} dk_z$ Convolution integral

10/8/09

Solution of the integro-differential equation

$$\nabla \times (\nabla \times \vec{E}^{N}(\vec{x})) + \frac{\omega^{2}}{c^{2}} \left(\bar{\bar{\epsilon}}_{cold} - i(\bar{\bar{\epsilon}}_{Leff})\right) \cdot \vec{E}^{N}(\vec{x}) = 0$$

$$\left(\bar{\bar{\varepsilon}}_{Leff}^{(\mathbf{N})}\right) = \frac{1}{E^{(\mathbf{N}-1)}} \frac{\hat{z}}{\sqrt{2\pi}} \int \varepsilon_{\mathrm{L}}(z-z') E_{z}^{(\mathbf{N}-1)}(z') dz'$$

Conventional PDE which can be solved by COMSOL

Convolution integral done in MATLAB

- Effective damping ε_{Leff} and power absorption profile shows that solution converges in few steps
- Very robust with respect to initial guess

Orso Meneghini – COMSOL CONFERENCE – Boston 2009

|E_{_|}| at different temperatures

- As temperature increases the wave penetration becomes shorter
 - Consistent: LH waves damp about where v_µ=ω/k_µ~3 vTe
- At ~2.5 keV the propagation becomes multi-pass

llii

- Stationary solution for 1D FP equation
 - Wave fields distort the electrons velocity distribution, while collisions tend to restore Maxwellian
 - Formation of a tail, which changes the damping characteristics

- Parallel distribution function is evaluated at each step of the ELD iteration (Diffusion of distribution function due to RF fields)
 - Dielectric term $\epsilon_{l}(k)$ is modified, and correspondingly ϵ_{leff}
 - Hermitian part of the dielectric tensor is unchanged (the wave propagation is still described by the cold plasma propagation)

Integration with 1D FP shifts power deposition

- Alcator C-Mod
 - Equilibrium 1080320017
 - $T_{e0} = 2.5 \text{ keV}$
 - $n_{e0} = 5 \ 10^{19} \, m^{-3}$
 - $n_{||} = 2.5$

- Power deposition shifts outwards, consistently with larger population of fast electrons
- Convergence was not affected by the integration with 1D FP

- FEM approach allows seamless handling of antenna, first wall, SOL and core regions
 - LH waves propagate where $n_e > n_e$
- SOL modeled exponential decay as a function of magnetic flux topology
- Collisional damping by finite σ $\nabla \times (\mu_{\rm r}^{-1} \nabla \times E) - k_0^2 (\epsilon_{\rm r} - j\sigma/\omega\epsilon_0) E = 0$
- Alcator C-Mod
 - Equilibrium 1080320017
 - $T_{e0} = 2.0 \text{ keV}$
 - $n_{e0} = 8 \ 10^{19} \, m^{-3}$

 $- n_{||} = 2.3$

Off-site inversion of EM problem

DELL T7400 workstation 2 quad-cores 3.0GHz 96 GB ram

Assemble EM problem (**A**,**b**) using COMSOL

Post-processing of solution in COMSOL and MATLAB

Cray XT4 9572 quad-cores 2.3GHz 78 TB ram

Invert the sparse linear system using MUMPS library

Problem with 25M unknowns has been successfully solved

- Plasma wave simulation based on FEM is under development
 - Straightforward modeling of 3D cold plasma
 - Seamless handling from the vacuum to the core plasma
 - Efficient approach (allows fast solution of larger problems)
 - Accelerate the development of antenna design and wave simulation
- Single toroidal mode analysis
 - Electron Landau damping and 1D FP included by an iterative procedure
 - Possibility of accurately modeling the SOL
 - Large scale plasma simulation are at reach using massive parallel computing
 - 2D simulation is evolving towards high-density multi-pass regime
- Working towards comparisons with experiments
 - 2D Fokker Planck to compare with experiment (driven current/Hard X-ray)
 - Take into account the full width of the antenna launched spectrum