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Abstract: This paper proposes a FEM model for a 
segment of a nervous cell axon, which takes into 
account, through the so called Hodgkin-Huxley 
equations, the non linear and time varying dynamics of 
the membrane surrounding it. A combination with 
Maxwell equations is performed in a numerical 
procedure implemented in the COMSOL 
Multiphysics® environment. A thin layer approximated 
alternative model is presented too, which proves to 
reduce calculus burden. Results are shown 
demonstrating a very good agreement with literature 
data for both the proposed approaches. 
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1. Introduction 
 

Neural prosthetics can considerably widen the 
lifespan and health quality of people and thus the 
mechanisms of neuron firing and transmission of 
signals are increasingly investigated. In order to study 
the influence of electrical signals on the nervous cells 
for setting appropriate stimulation protocols and to 
design efficient equipment, proper models are needed 
capable of describing the phenomena occurring at the 
interface between neural cells and stimulating 
electrodes [1]-[4]. In this paper an accurate model for a 
tubular segment of a nervous cell axon (the neuronal 
structure carrying nervous signals) is presented which 
takes into account, through the so called Hodgkin-
Huxley (HH) equations [5], the non linear and time 
varying behaviour of the membrane that surrounds it. 
The lumped-circuit quantities of the HH 
electrophysiological model are transformed into 
parameters adapt to a field solution study. In fact, the 
Electro Quasi Static (EQS) formulation of the Maxwell 
equations describing the relevant phenomena is faced 
by using the Finite Element Method (FEM). The non 
linear differential equations describing the membrane 
behaviour are efficiently and accurately combined with 
the FEM solution in a numerical procedure performed 
by using COMSOL Multiphysics®. The proposed 
procedure is then employed to evaluate the space and 
time dynamics of the Action Potential (AP) along the 
axon segment, when excited by current density stimuli 
of different amplitude and duration and under two 
different temperature conditions. Due to its simple 
implementation the proposed model can be easily used 
to simulate the behaviour of more complex nervous 
structures. The simulation procedure encompasses 
three phases: the first, in which the resting (static) 
solution is calculated, thus ensuring that the correct 

starting point for dynamic simulations is obtained, the 
second one, exploited to simulate non-propagated APs 
and the third one to reproduce their propagation along 
the segment under examination. 
The extrusion feature of COMSOL Multiphysics 
proves to be a very helpful tool in projecting variables 
(voltages) from cell membrane boundaries onto the 
domain itself, where the calculation of its voltage-
dependent electric conductivity needs to be performed. 
In addition, the very small dimension of the membrane 
thickness compared to the other geometrical 
dimensions of the system is approximated, in an 
alternative version of the model depicted in Figure 1, 
as a thin layer thus leading to a sensible reduction of 
the computation burden.  
 

 
 

Figure 1. The axon slice under analysis (3D sketch). The 
section in r-z plane is highlighted in pink. 
 
A comparison between the two model versions has led 
to very satisfactory results, as far as APs elicitation and 
propagation are concerned. 
The work is structured as follows. The second section 
describes the model implementation and the settings, 
used to perform the “translation” of HH circuit 
equations into those suitable for a field solution, while 
its subsection explains the particulars of the thin layer 
approximated alternative model. A detailed comparison 
between the two proposed modelling solutions, is, 
instead, carried out in the third section, where different 
stimulation conditions are employed. The effect of 
temperature settings on membrane dynamics is, then, 
investigated within the fourth one, together with the 
propagation phenomenon. All simulations results are in 
keeping with theoretical expectations. 
 
2. Use of COMSOL Multiphysics 
 

The schematic structure of an axon segment of 
nerve cell surrounded by its membrane (or axolemma) 
is pictured in Figure 1. Due to its axial symmetry, it is 
possible to consider only the highlighted section by 
modelling it in a cylindrical coordinate system as 
shown in Figures 2a and 2b. The 2D axial symmetric 
transient analysis packet of the Quasi-Static Electric 
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AC/DC module, the time dependent analysis of the 
PDE mode packet in general (version A) and weak 
form (version B), the extrusion tool and the possibility 
to perform a thin layer approximation (as in [8]) given 
by COMSOL Multiphysics are exploited, in order to 
evaluate the behaviour of the considered structure.  
 

 
Figure 2 Axisymmetric 2D section in r-z plane, with 
boundary conditions chosen: model version A (Fig.2a), 
model version B (Fig. 2b). 
 
In particular, we model a section of 0.5×1.505 µm2 
(0.5µm×0.5µm for the axon domain, Da, 0.5µm×5nm 
for the membrane domain, Dm, and 0.5µm×1µm for the 
external medium represented by De). The small size of 
the system with respect to the characteristic wavelength 
of the electromagnetic field and the low contribution of 
the energy associated to the magnetic field compared to 
that stored in the electric field allow the adoption of the 
EQS approximation of Maxwell equations. Sub-
domains Da and De are considered as linear, 
homogeneous and isotropic dielectric materials, 
described by their constant electric conductivity, σa and 
σe, and dielectric permeability, εa and εe respectively. 
The corresponding values are reported in Table 1. On 
Dm, besides a linear permittivity εm, a non linear 
equivalent conductivity σm defined by (2) and an 
external current density depending on the voltage 
across the membrane are used in order to approximate 
the nonlinear behaviour of the medium with respect to 
the imposed electric field (according to the HH model 
of the membrane). In particular, HH circuit-equations 
must be “converted” to obtain their field equivalent. 
First of all, since membrane thickness is very small, it 
can be looked at as a parallel plate capacitor. Therefore 
its dielectric and equivalent conductivity can be 
derived from values found in literature [5]. In 
particular, once defined all the constant parameters as 
in Table 1 [5], the dielectric constant per unit area is 
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whereas membrane equivalent conductivity σm can be 
derived by HH overall membrane conductance, Gm, 
defined as a function of the Sodium, Potassium and 
Leakage conductances, depending on transmembrane 
voltage (TMV) through the so called channel activation 
variables. Then, σm becomes: 
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Table 1. Parameters appearing in the model. 
 
Parameter Value Description 
Vsta -60[mV]  Static TMV, at which membrane 

is polarized in the simulation  

εm 5.65 Membrane relative dielectric 
constant 

Cm 1[µF/cm2] Membrane capacitance per unit 
area  

dm 5[nm] Membrane thickness  

GNamax 120[mS/cm2] Conductance per unit area of the 
Na channel 

GKmax 36[mS/cm2] Conductance per unit area of the 
K channel  

Gl 0.3[mS/cm2] Conductance per unit area of the 
leakage channels  

ENa 55 [mV]   Nernst voltage due the Na  
concentration  

EK -72 [mV]  Nernst voltage due the K  
concentration  

El -49.387[mV]  Nernst voltage due other  ionic 
concentrations  

ansta 58.197 Initial value[1/s] 

bnsta 125 Initial value [1/s] 

amsta 223.563 Initial value [1/s] 

bmsta 4000 Initial value [1/s] 

ahsta 70 Initial value [1/s] 

bhsta 47.425 Initial value [1/s] 

σAx 0.5 Axoplasm conductivity 

εAx 80 Axoplasm diel. constant 

σExt 1 Ext. Med. conductivity. 

εExt 80 Ext. Med. diel..constant 

 
The expressions of ionic channel conductances, 
reported in (4.a) and (4.b) show their connection with 
the activation variables m, n and h, implicitly defined 
by the differential equations set (5): 
 

hmGG NaNa
3

max=  (4.a) 
4

maxKK nGG =
 

(4.b) 

 

( ) xx
dt

dx
xx ⋅−−⋅= βα 1  (5) 



where x∈{m,n,h}.  
The transfer rate coefficients αx, βx, in (5), are not 
constant numbers but, as shown in Table 2, depend on 
the value of the voltage across the axon membrane 
Vm(x,y,z,t).  
The HH trans-membrane current density equation for a 
unit area patch of membrane can be expressed as: 
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with 
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Furthermore, the equation of continuity implemented 
everywhere over the FEM model can be written as (8) 
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The continuity equation (8) must be implemented on 
the whole model, whereas the HH equations system 
must be associated only to the membrane domain.  
As the three voltage-controlled conductances GNa, GK 
and Gl are meaningful only on membrane domain and 
not externally, they require to be only locally defined.  
The flexibility of COMSOL Multiphysics proves 
useful in handling variables, as well as in the post-
processing phase.  
In the simulation session a PDE packet in general form 
is coupled to the Electrostatic module: the first one is 
employed in order to solve equation (8) with respect to 
the so-called dependant variable (in this case electric 
potential, V), whereas the second one is introduced to 
solve the three differential equations in m, n, h 
(dependent variables), representing channel activation 
variables according to the HH model ([1],[3]), as 
shown in equations (5) and Table 2.  
In order to obtain the voltage values along both sides of 
membrane, point by point along the z coordinate, the 
“extrusion” feature of COMSOL Multiphysics is 
conveniently employed. 
 
Table 2. Expressions of the transfer rate coefficients. V’=Vm–
Vsta represents the TMV deviation from the resting value 
[mV]. 
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In fact, the equations implemented there, explicitly 
depend on TMV, Vm(z, t): 
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where Vi and Vo are the voltage across the boundaries 4 
and 6, respectively (Figure 2a). In this way the HH 
lumped-circuit quantities are “translated” into 
parameters adapt to a field solution study, as previously 
highlighted.  
It must also be noticed that, while εm obtained is a 
constant, σm depends on Vm (z,t). 
The simulation is carried out, by fixing all initial 
conditions from nominal resting values. The iterative 
procedure is stopped when the numerical variations are 
sufficiently negligible leading to the “equilibrium” 
steady state conditions. 
This condition is adopted as a starting point for 
studying the membrane dynamical behaviour in the 
second step of the procedure in which the cellular 
responses elicitation are evaluated. Square window 
current density stimuli of different amplitude and 
duration have been applied to boundary 1 (Figure 2). 
 
2.1. Thin Layer Approximation  
 

The cell membrane is an extremely thin structure 
that increases the simulation time and memory request 
in finite element modelling.  
This applies for the short axon segment under analysis 
and it is especially true in the perspective of a 
generalization of the model to a whole axon.  
Indeed, if it were necessary to simulate a very long 
neuron (i.e. motor neuron) behaviour, this would result 
in a form factor (length of the axon divided by 
membrane thickness) that could also be of the order of 
109.  
In order to simplify meshing and to greatly reduce 
simulation time and memory request it is useful to 
employ a thin layer approximation [8] for the 
membrane.  
In this way it is completely avoided the physical 
realization of the corresponding thin domain, by 
substituting it with an interface surface.  
This leads to an alternative model, B (Figure 2b), that 
completely satisfies the hypotheses of applicability of 
the approximation: 
 
1) there is a substantial difference between membrane 
domain conductivity and those of the other two 
domains; 
2) lateral boundaries are insulated (null net flux); 
3) current density components along ϕ and z are 
negligible with respect to that along r-axis.  
 
In particular, it is possible to approximate the potential 
distribution along the membrane thickness as being 
linearly varying from Vo to Vi. Thus, by using the 
continuity equation for the current, it is easy to derive 
the expression for an equivalent current density Jeq [8]: 
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where V1 and V2 represent the voltage values along the 
membrane boundaries 4 and 7 of Figure 2, 
respectively. This equation can be implemented by 
using two different Electrostatics packets in order to 
allow the solutor to “see” interface surface (substituting 
the membrane domain of the model A) once as 
belonging to axoplasm Da, once to external medium 
domain De.It is clearly expectable that voltage on that 
boundary will have a discontinuity (V2-V1) almost 
equal to the value that transmembrane voltage would 
have reached, if the membrane were really 
implemented in the model as a 2D domain.  
Thus, V1 is set as an active variable only in the 
axoplasm domain, V2 only on the external medium 
domain, while both are defined on their interface. Jeq is 
imposed as an input current density on this boundary.  
In addition, an alternative formulation of the three non 
linear differential equation must be provided on this 
surface where all expressions are locally defined. The 
idea is to use a weak form for boundary approach, 
instead of the COMSOL PDE packet in general form, 
as that adopted in version A.  
This choice allows to handle all the equations in the 
integral form, multiplying both sides of each equation 
by a test function and then integrating. 
 

3. Comparison Between the Two Models  
 

In order to make a fair comparison between the two 
modelling solutions, some common parameters are 
adopted (Table 3).  
 
Table 3. Parameters used for comparing the two models 
 

Calculus and mesh parameters Value 
Simulation times 0:10-4:0.02s 
Relative tolerance 10-4 
Absolute tolerance 10-8 
Max. element size scaling factor 1 
Element growth rate 1.3 
Mesh curvature factor 0.3 
Mesh curvature cut off 0.001 
 
The same initial and boundary conditions are fixed 
everywhere, exception made for the various settings 
related to membrane domain since it is not present in 
the second model. This settings induce the meshes 
pictured in Figure 3. Even before introducing any 
current density source to elicit membrane response, a 
clear improvement can be observed when adopting the 
weak solution for the model B, instead of A, since the 
Delunay algorithm does not lead to crowd the great 
amount of triangles next to the thin membrane domain, 
as Figure 3 demonstrates. The savings in terms of 
simulation time and amount of memory consumed are 
summarised in Table 4 to simulate a stationary 
equilibrium state. 

 

   
a)   

   
b) 

 
Figure 3 Mesh in the model with membrane, a) and 
without membrane using thin layer approximation, b). 
 
Table 4. Figures of merit concerning the two models 
 

PARAMETER/MODEL  A B 
Degrees of freedom 7086 685 
Number of boundary sides 220 45 
Number of elements 2378 300 
Minimum quality level 0.5867 0.5666 
Simulation duration 13.000 s 2.630 s 

 
In Table 5, instead, the case of 20ms of membrane 
behaviour simulation is reported when it undergoes a 
stimulus-induced response. 

 
Table 5. Simulation times in [s]. Stimulus duration: short (d), 
long (D). Stimulus amplitude: low (a), high (A) 

 

 
In this case an appropriate current density (Jin, the 
square window shown in the Inset of Figure 4a) is 
applied at r=r1=1nm, very close to the symmetry axis, 
in order to trigger the excitable membrane (if current 
density stimulus where injected exactly at r=0µm, 
current density would have been undefined). A great 
advantage is offered by Model B in the dynamic case 
too, as far as stimulation length is concerned (Table 5). 
It is interesting to observe how membrane responses, in 
the four corresponding cases (Figure 4a) almost 
coincide in the two modelling approaches and are in 
accordance with theoretical expectations [4]. In the first 
case (da), the stimulus is not sufficient to elicit any AP 
(sub-threshold behaviour, whose parameters, rise time 
and amplitude, are those expected) showing a passive 
electrotonic nature of the membrane, being it 
approachable (at least in first approximation) as an R-C 
circuit. In the second and in the third one, an AP is 
observed, while in the fourth one, since both strength 
and duration of the stimulus pulse are high (see [3]), 
two APs are excited, the second of which is lower than 
the other, because refractory period is not respected. 

 d/a d/A D/a D/A 
Model A 83.64 185.594 119.313 183.719 
Model B  19.797 48.968 26.891 42.704 



  

  
 
Figure 4 (a),(b),(c),(d) Membrane response (T= 6.3°C) in cases da, dA ,Da, DA, respectively. Inset: Input stimulus parameters 
 
4. Temperature Dependence and Propagation 
Effect 
 

The simulations described in the previous section 
are carried out supposing an operation temperature of 
6.3°C. Adding also temperature dependence to the 
model, it has been possible to obtain the results shown 
in Figure 5. As theoretically expected, when the 
temperature is 18.5°C the membrane response results 
in a sequence of six APs, shorter than the two observed 
at lower temperature (Figure 4d). Indeed, channel time 
constants are all scaled by the factor 3(0.1T-0.63), see [3], 
since the new differential equations become: 
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Figure 5. Multiple APs at T=18.3°C. 

 



 

 
 

 
Figure 6. a) Propagation phenomenon: the moving active zone. Potential map at three different times of pulse conduction (Axes [m], 
Voltage [V]). b) Simulation results for local currents in an activated zone. c) Zoom in an active zone: electric potential lines inside 
and outside membrane, for model A. (Axes [m], Voltage [V]). 
 
This results in a reduced time constant τ’ x, which 
induces a faster dynamics in the TMV. 
Another particularly meaningful remark concerns the 
possibility to reproduce nervous stimulus propagation 
offered by the models. Specifically, in accord to 
Hodgkin and Huxley experimental setup, once the 
resting state conditions have been achieved over all the 
structures, a potential difference, beyond the natural 
excitement threshold, can be fixed across membrane at 
any transversal section (in this case at z = 0) of the 
models to elicit a local action potential. This 
propagates along the considered axon segment, thanks 
to the well-known physiological mechanisms proper of 
non-myelinated fibres, whose reproduction was the 
objective of this phase of simulation. In particular, in 
the two model solutions this is achieved by fixing a 
15mV voltage difference across axon membrane in the 
point whose coordinates are r=0.5µm and z=0, thus 
obtaining the propagation effect shown in Figure 6. 
The explanation of these results is the presence in a 
certain instant of an AP in an area (the active zone,  
 
emulated constraining TMV). This implies that the 
inner side of the membrane is “more positive” with 
respect to the outer one. The charge distribution non-
homogeneity, thus created, induces longitudinal 
potential gradients; these in turn generate electric 
currents (known as local currents) in both intra and 
extra-cellular media, whose lines merge into the active 
zone (Figure 6b and 6c). All this process results, as it 
would have been expected theoretically, in the 
activation of the other near areas interested by these 
charge fluxes. Simulation results for  model A are  

 
reported to show equipotential lines distribution within 
an activated section of membrane domain (Figure 6c).  
The visualization of the propagation effect would not 
have been easy if actual electric properties of external 
means and axoplasm domains had been used in the 
simulation environment: the time an AP needs to pass 
all along the segment implemented is of the same order 
of amplitude of a reasonable discretization time step. 
So, in order to make propagation phenomenon not 
“instantaneous”, but better “visible” at this phase of  
model testing, a choice has been done to divide the two 
dielectric constants and electric conductivities of those 
domains by the appropriate factor 106. Indeed, a 
theoretical approximation of propagation speed is (11): 
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where v is propagation speed [m/s], K the constant  
10470 [1/s], a axon radius [cm], ρi  axoplasm resistivity 
[ Ω cm] as those used by Hodgkin and Huxley. It is, 
thus, possible to understand why the simulated velocity 
is a thousand times smaller than the real one, since 
ρi,simulated=106ρi,real.. 

 

5. Conclusions 
 

The described FEM models allows to simulate the 
electrophysiological behaviour of a portion of nervous 
cell axon, to carry out the simulation of the static, 
underthreshold and active dynamic behaviour, to 
reproduce action potentials proposing a less expensive 



method to achieve accurate simulation results. It must 
be noticed that FEM implementation of the weak 
formulation on discontinuity boundary has required 
particular attention due to the nonlinear characteristics 
of the equations for the thin layer approximation. The 
model thus obtained, validated using literature curves 
[4], has proved a very useful starting point for a wide 
range of future works. It is now possible, without 
dealing with enormous form factors, to simulate a 
whole non-myelinated fibre, to introduce soma and 
dendrites, implementing their behaviour simply 
considering locally differentiated channel densities and 
translating them into opportune conductances per unit 
area. It could also be thought to reproduce saltatory 
conduction of myelinated fibres or to model synaptic 
receptors reaction to different types of 
neurotransmitters, synaptic excitatory and inhibitory 
synaptic potential or their spatial and temporal 
summation. However, the most interesting application 
of these modelling efforts is in the field of the 
Functional Electric (or Magnetic) Stimulation: this 
medical treatment, used to stimulate peripheral nerves 
or deep zones in the brain of patients, usually suffers 
from a certain amount of lack in available data as far as 
the efficacy of  electrodes is concerned. The models 
realized offer a good chance, especially if improved, by 
adding complex dependences to it, to realize huge 
simulation campaigns, aiming to perform a range 
analysis on the most significant synthesis parameters of 
Functional Electric Stimulation electrodes. 
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