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Abstract: COMSOL Multiphysics has been
applied to develop a model for inductive heat-
ing. A coarse, lumped model of the interior of
a high temperature reactor is coupled to finite
element models for the electromagnetic field,
the temperature distribution outside the re-
actor, and mechanical stresses in the crucible.
The model can be applied to study operational
conditions, thermal stresses, or design details
for a high temperature reactor.

Testing showed that special treatment of
the numerical solution procedure is required
for this type of highly non-linear model.

Case studies revealed further that the
present estimate of non-linear iteration errors
during time integration can be inaccurate by
orders of magnitude. It is suggested that the
overall fundamental balances (energy, mate-
rial, etc.) are used as additional parameters
to check the quality of the non-linear solution.
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1 Introduction

High temperature reactors heated by electro-
magnetic induction are used for various pur-
poses like metal melting, refining, alloying, de-
gassing, etc. This type of reactor is in princi-
ple a container with a liquid, surrounded by
a thermally and electrically insulating mate-
rial, c.f. figure 1. An electric coil is located
outside the insulation. A brief Internet search
revealed that industrial furnaces are available
with maximum power input in the range of
50-20,000 kW. Typical frequencies are found
in the range 50-1000 Hz. Due to high electric
currents, the coil is made from water-cooled
copper tubes.

An alternating electric current in the coil
sets up an alternating magnetic field. This
field induces electric currents in the liquid
and/or the crucible to supply the required
heating. When a metal is processed, the heat
can be delivered directly into the metal. Here,

we will consider the case where the liquid is
non-conductive; and only the crucible is di-
rectly heated by electric currents.

The conditions in high temperature reac-
tors are not easily measured, and models are
therefore often applied to get improved insight
into operational conditions and design issues.
The current study focuses on the main thermal
conditions, including thermally induced me-
chanical stresses. The model only takes into
account what is required for improved insight
into these matters. Construction details, like
tubes in the lid, pouring spout, steel casing,
etc., are omitted. Further, the model assumes
axial symmetry.

The model is implemented in COMSOL
Multiphysics version 3.5a, applying three ap-
plication modes for the electromagnetic field,
the temperature distribution, and the thermal
stresses. The inner part of the reactor is de-
scribed by three discrete (lumped) state vari-
ables: the mass of the liquid, and the temper-
atures in the liquid and the void.

Figure 1: Axially symmetric model geometry
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2 Model

2.1 AC Power Electromagnetics

Maxwell’s equations need to be solved to find
the electric power induced in the furnace. For
an axially symmetric problem COMSOL Mul-
tiphysics version 3.5a solves for the non-zero
angular component of the magnetic vector po-
tential, c.f. the COMSOL documentation for
equations and other details [1].

For an industrial furnace the electromag-
netic field should not spread outwards. Field
guides are therefore located immediately out-
side the coil. The spread of the field is also
limited by a steel casing and possibly also by
one or more copper plates. The computational
domain for the electromagnetic model must in-
clude the coil, and some small space just out-
side the coil. It is further limited by the steel
casing of the furnace.

The magnetic field will be parallel to the
steel casing and the field guides. Hence, “mag-
netic insulation” is the appropriate boundary
condition, except along the center line, where
there is axial symmetry.

The coil is described in the model by a line
element through the center of the turns from
the bottom to the top of the coil, c.f. figure 1.
The individual turns might have been repre-
sented , which would have made the geometry
considerably more complex. Preliminary com-
putations showed, however, that such details
would not significantly improve the accuracy
of the computed power distribution in the cru-
cible.

Immediately above and below the electric
coil there can be a few turns that are not con-
nected to external current. These turns are
used for additional water cooling. Prelimi-
nary calculations showed that induced electric
currents in such turns will limit the vertical
spread of the magnetic field. In the model they
can be appropriately represented by horizon-
tal line elements with a “magnetic insulation”
condition.

The surface current density in the line el-
ement for the coil, perpendicular to the plane
in figure 1, is part of standard COMSOL in-
put. But for practical applications, the to-

tal induced power is the critical physical in-
put. As the electromagnetic problem is linear
with respect to the dependent variable and the
input current density, the distribution of the
induced power does not depend on the cur-

rent density. It is then only necessary to solve
the electromagnetic problem for an arbitrarily
chosen “coil current”. We define a Subdomain
Integration Variable and let COMSOL com-
pute the total induced power [W], Wsc, due to
the chosen current:

Wsc =

∫∫
2πr Qav(r, z) dr dz (1)

Qav(r, z) is the distributed time average re-
sistive heating [W/m3], one of the standard
fields that can be derived from the COMSOL
solution. If Wtotal is the total power input
[W], the actual (distributed) resistive heating
[W/m3] is given by:

Qinduced =
Wtotal

Wsc

Qav (2)

The electromagnetic solution is coupled
to the heat transfer through the variable
Qinduced. In the opposite direction, the elec-
tromagnetic solution will depend on the tem-
perature distribution due to temperature de-
pendent electrical conductivity.

2.2 Heat Transfer by Conduction

The governing equation is

ρcp

∂T

∂t
+ ∇(−k∇T ) = Qinduced (3)

where ρ is the density [kg/m3], cp is the
heat capacity [J/kg K], T is the temperature
[K], k is the thermal conductivity [W/m K],
and Qinduced is the heat source [W/m3] given
by equation (2).

The boundary conditions are as follows:

• Towards the coil and the additional
water-cooling immediately above and
below: Heat transfer coefficient

• At the remaining exterior boundaries:
Heat transfer coefficient and radiation

• Towards the inner liquid: Heat transfer
coefficient

• Towards the inner void: Radiation

• Towards the center line: Radial symme-
try (no flux)

Non-linearities are included due to radia-
tion boundary conditions and temperature de-
pendent thermal and electrical conductivities
of the crucible.



2.3 Inner part of container - Discrete

State Variables

The flow parameters for the hot liquid in the
crucible are rather uncertain. A flow model for
the liquid was therefore not considered, and
the liquid has been represented by a lumped
model. Above the liquid, heat is transferred
mainly by radiation. A simplified model has
been adopted where the inner surfaces are as-
sumed to exchange heat with a fictitious body
of average (radiation) temperature. When
only heating and cooling are studied, the in-
ner part of the container is described by the
following three state variables:

• Ml, mass of liquid in the container [kg]

• Tl, temperature of the liquid [K]

• Tv, average radiation temperature above
the liquid [K]

Depending on the process to be studied,
a few more state variables can be relevant.
There can for instance be two liquid phases,
or the liquid can contain more than one com-
ponent.

The equations for the three state variables
are:

dMl

dt
= ml (4)

Mlcpl

dTl

dt
= Qvl−Qlw−mlcpl(Tl−Tfeed) (5)

−Qvl − Qvw = 0 (6)

where ml is the filling rate of inflowing liq-
uid [kg/s], cpl is the heat capacity of the liquid
[J/kg K], Tfeed is the feed (input) tempera-
ture of inflowing liquid [K], Qvl is the heat flow
from the void to the liquid [W], Qlw is the heat
flow from the liquid to the crucible wall and
bottom [W], and Qvw is the heat flow from the
void to the crucible and the lid [W].

Equation (5) describes the conditions when
more liquid is added to the crucible. If the
matter is charged as solid particles, the heat-
ing of the solids and the latent heat (for melt-
ing) must also be taken into account.

The heat flows are given by:

Qvl = πR2

l ǫlσ(T 4

v − T 4

l ) (7)

Qlw =

∫
2πrhlw(Tl − T )ds (8)

Qvw =

∫
2πrǫwσ(T 4

v − T 4)ds (9)

where Rl is the inner radius of the crucible
at the liquid level (the inner wall is not neces-
sarily vertical) [m], ǫl is the effective emissivity
of the liquid, ǫw is the effective emissivity of
the inner wall and lid, σ = 5.67 ·10−8W/m2K4

is the Stefan-Boltzmann constant, hlw is the
heat transfer coefficient between the crucible
and the liquid [W/m2K], and ds is the line
differential along the inner boundary of the
crucible and the lid. The boundary integral
in (8) is taken along the inner crucible bound-
ary from the center at the bottom to the liquid
level, while the integral in (9) is taken along
the remaining part of the inner boundary.

Qlw and Qvw are implemented as In-
tegration Coupling Boundary Variables in
COMSOL Multiphysics, where the integrand
is evaluated at a limited number of integration

points within each boundary element. When
the liquid level is gradually raised, this dis-
cretization will introduce discontinuities in the
integrands each time an integration point is
passed. The integrals were therefore smoothed
across the liquid level.

The corresponding smooth boundary con-
dition for the heat transfer problem can be
written as:

q = flc2hs(zl − z, ǫz)hlw(Tl − T )
+flc2hs(z − zl, ǫz) ǫwσ(T 4

v − T 4)
(10)

where q is the normal heat flux from the
liquid or void to the crucible or the lid [W/m2],
and zl is the liquid level [m]. flc2hs(z, ǫz) is a
smoothed version of the Heaviside step func-
tion [2]. The function is zero when z < −ǫz,
one when z > ǫz, and smoothed in the interval
−ǫz < z < ǫz. The parameter ǫz [m] should be
comparable to the linear size of the elements
involved.

2.4 Thermal Stresses - Axial Symmetry,

Stress-Strain

The crucible will expand considerably when
heated from room temperature to operating
conditions, while there is no significant expan-
sion of the water-cooled coil. To prevent dam-
age, it is required that the insulation be soft.



Thermal expansion of the lid must also be lim-
ited to prevent a significant force on the cru-
cible.

Uneven temperature distribution can cause
significant thermal stresses. An Axial Sym-
metry, Stress-Strain computation is therefore
included for the crucible. The model assumes
that the crucible can expand freely in all di-
rections, except along the center line where
only vertical deformations can take place. One
point on the center line must be kept fixed to
ensure a unique solution of the equations.

COMSOL’s application mode for Axial
Symmetry, Stress-Strain (smaxi) is applied
with thermal expansion as a load. The strain
temperature is taken from the Heat Transfer
solution for the crucible, and the strain ref-
erence temperature (for zero strain) is set to
room temperature. Mechanical load due to
pressure from the liquid will be small, and
has therefore been neglected. The equations,
input parameters, etc., are described in the
COMSOL documentation [3].

The equations are linear with respect to
the mechanical field variables. They depend
on the computed temperatures, but there are
no couplings from the mechanical problem to
other equations. The problem is quasi-static,
i.e. the temperatures change with time, while
the mechanical equations are stationary.

3 Case Studies

Artificial, but reasonable, material data was
chosen for the case studies. The electrical fre-
quency was set to 100 Hz.

First a stationary solution was computed
following these steps:

1. Solve the electromagnetic equation

2. Solve the electromagnetic and the tem-
perature equations

3. Solve the mechanical equations

Step 2 involves non-linearities and requires
several iterations, while step 1 and 3 only in-
volve linear equations (one iteration). Initial
testing proved that step 1 is required to pro-
vide a reasonable initial value for the power
input, Qinduced, in the temperature problem.

The stationary computations were followed
by a dynamic simulation for two different
cases.

The model was set up in COMSOL’s
graphical user interface. Matlab scripts and

the Matlab interface were then applied to per-
form the computations.

As the electrical conductivity in the cru-
cible depends on the temperature, the for-
mulation in equations 2 and 3 imply that all
temperatures in the crucible are directly cou-
pled. The formulation worked fine in version
3.4 of COMSOL Multiphysics, but the compu-
tational time increased some 20-30 times after
upgrading to version 3.5. The problem for ver-
sion 3.5 was solved by excluding Qinduced in
the evaluation of the system’s Jacobian ma-
trix.

3.1 Instantaneous Filling

A stationary computation was performed with
400 kg liquid in the container and 42.3 kW
power. The power had then been adjusted
to make the liquid temperature approximately
equal to 1000 ◦C. Then the amount of the liq-
uid was instantaneously changed to 1200 kg
with a temperature of 600 ◦C, by solving fic-
titious equations for these two state variables.
150 kW was added to the power released in
the crucible, and a dynamic simulation was
started to simulate the development for two
hours. The following numerical parameters
were chosen:

epsz = 1.e-6; % Smoothing parameter

rtol = 0.001; % Relative tolerance

atol = 0.0001; % Absolute tolerance

where epsz is ǫz, the smoothing parameter
in equation 10, and rtol and atol are stan-
dard parameters for COMSOL’s time integra-
tion. The maximum time step was set to 240
s.

Some computed temperatures are shown in
figure 2: Tv, Tl, and the maximum temper-
ature in the crucible (Max T). The average
radiation temperature in the void, Tv, shows
irregular behavior after some 95 minutes. The
case was therefore rerun with the optional pa-
rameter ntolfact = 0.1. The tolerance for
errors due to non-linear equation solving will
then be reduced by this factor, compared to
the time stepping tolerance. The solution still
showed some irregularities, and ntolfact =

0.01 was therefore tested. The temperatures
for this run showed smooth time evolution, c.f.
figure 3. The corresponding maximum stresses
in the cylindrical coordinate directions, ϕ, z,
and r, are plotted in figure 4.
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Figure 2: Case 1 - First run.
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Figure 3: Case 1 - ntolfact = 0.01.
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Figure 4: Case 1 - Maximum stresses in crucible.
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Figure 5: Case 1 - Normal heat flux from the

crucible wall to the inner parts after 20 minutes.

Finally, a few runs were made for different
values of the smoothing parameter in equa-
tion 10. The influence on the heat flux from
the crucible wall to the liquid and the void is
illustrated in figure 5, where the liquid level
is located at z = 0.624 m, and the simulation
time is 20 minutes.

3.2 Gradual Filling

800 kg “cold” liquid at 400 ◦C was charged at
a rate of 1600 kg/h in case 2 . The filling rate
was gradually increased during two minutes at
the start and gradually diminished at the end
by applying the function flc2hs; implying 32
minutes for the total charging period.

For an initial test with the same numerical
parameters as for case 1 the error in the fi-
nal computed amount of liquid was several kg.
The relative tolerance, rtol, was then set to
zero and individual tolerances, atol, were set
for each of the state variables: 0.01 kg for the

mass, 0.1 K for temperatures, and values cor-
responding to rtol = 0.001 for the remaining
ones. The error in the amount of liquid was
then reduced to about 1 kg, or less.

Several cases were run for different values
of epsz, the smoothing parameter in equation
10. The values correspond to almost zero, and
1

2
, 1, 2 and 3 times the maximum mesh size.

A summary of the main time integration re-
sults are shown in table 1. CPU is elapsed
CPU time in seconds, Steps are the number of
time steps, Jac is the number of evaluations
of the Jacobian matrix, and Sol is the number
of linear solutions.

In order to increase the accuracy of the
thermal boundary condition towards the in-
ner part of the crucible, the integration order
for the boundary elements was increased from
4 (standard) to 10 along the critical (vertical)
boundary. The main time integration results
are shown in table 2
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Figure 6: Case 2 - Main temperatures.
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Figure 7: Case 2 - Maximum stresses in crucible.

Only minor variations were found for the
main results, shown in figures 6 and 7 for epsz
= 0.03 m. The maximum void temperature
varied for instance within 2 K, while the max-
imum stress in the r-direction varied within
0.2 MPa.

Figures 6 and 7 show smooth behavior.
However, the computed heat flux along the
inner vertical boundary varied irregularly, es-
pecially for low values of epsz, c.f. figure 8.
The irregular oscillations disappeared when
ntolfact was lowered from 0.01 to 0.001 (not
shown in the figure).

4 Discussion

4.1 Case Studies

The model can be applied to study operational
conditions, thermal stresses, and design issues
for the reactor. Main results have been pre-
sented for two simple cases in figures 3, 4, 6,
and 7.

For case 1 the liquid temperature was sud-
denly dropped to 600 ◦C after adding more
liquid instantaneously. At the same time,
the power was increased and the temperatures

started to grow steadily. Figure 3 shows that
the liquid temperature returned to the sta-
tionary value, 1000 ◦C, after some 65 min-
utes. During this time period, the maximum
temperature (in the crucible) was increased by
some 400 K, i.e. a lot of power was spent to in-
crease the temperature of the relatively thick
crucible far beyond the stationary state.

Figure 4 shows that the crucible experi-
enced a thermal shock just after the “cold” liq-
uid had been added. The mechanical stresses
increased to maximum values after about one
minute. Then the stresses were reduced, be-
fore they started to increase again. The final
stress growth was due to increasing tempera-
ture differences from the power input to the
crucible.

For case 2, gradual filling during 1

2
hour,

the liquid temperature fell gradually to about
790 ◦C while the maximum temperature was
increased to some 1330 ◦C during the filling
period, c.f. figure 6. Temperature differences
in the crucible were caused by both cooling
from the liquid and heating by the released
power, and the maximum stress was gradually
raised to almost the same level as for instan-
taneous filling.

epsz CPU Steps Jac Sol

1e-6 583 370 257 1022
0.015 107 99 22 308
0.03 79 93 17 210
0.06 72 80 16 196
0.09 73 72 15 210

Table 1: Time integration summary, case 2.

Standard integration order along all boundaries.

epsz CPU Steps Jac Sol

1e-6 301 210 75 834
0.015 94 99 21 245
0.03 79 89 17 214
0.06 73 83 14 204
0.09 74 72 15 210

Table 2: Time integration summary, case 2. High

integration order along the critical boundary.
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Figure 8: Case 2 - Maximum normal heat flux on

the vertical inner boundary, epsz = 0.03 m.

After the filling period the temperatures
grew. The stresses diminished for some period
before they started to increase due to increas-
ing temperature differences.

Additional output from COMSOL can be
used to improve the understanding of the two
cases.

Further simulations can be run in order to
find: improved time dependent power input to
minimize the variations in the liquid tempera-
ture, operational conditions or design modifi-
cations to reduce the mechanical stresses, etc.
The model can easily be modified to include
more effects, like induction and/or reactions
in the liquid, or some induction in the lining.

4.2 Time Integration Issues

The COMSOL code discretizes the partial
differential equations involved and combines
them with the equations for the model’s dis-
crete state variables to form a system of non-
linear differential algebraic equations (DAEs).
This system is then solved by a code that
should keep the errors below specified toler-
ances [2]. There are two kinds of errors to be
considered:

1. Time integration error - Difference from
the exact solution due to the time step-
ping method. This type of error can
be made arbitrarily small by reducing
the time step. If the estimated error is
smaller than the tolerance, the time step
is increased; and vice versa.

2. Non-linear iteration error - Error due to
limited number of iterations and rate of

convergence. Can be reduced by more
iterations and new evaluation(s) of the
system’s Jacobian matrix. Can be close
to, but not less than, the number preci-
sion of the computer.

The evaluation and subsequent decomposition
of the Jacobian matrix is comparatively time
consuming. The code will therefore try to
avoid new evaluations until it is required due
to slow convergence of the non-linear itera-
tions.

For case 1, the relative tolerance for both
types of errors was set to 0.001, and the er-
rors for one time step should be around 1 K
or less for the temperatures. Figure 2 shows,
however, some irregular short time variations
of magnitude around 100 K. These variations
disappeared when the non-linear tolerance was
reduced by a factor of 0.01. They were there-
fore caused by high non-linear iteration errors.

For case 2, such variations can not be spot-
ted for the plotted temperatures. However,
irregular variations were found for the maxi-
mum heat flux towards the inner part of the
crucible, some 10 kW when epsz = 0.03 m.
Such irregularities correspond to temperature
variations around 5 K, as the boundary con-
dition in this region was heat flux with a heat
transfer coefficient of 2000 W/m2 K. This is
far more than the tolerance for non-linear it-
eration errors, which was atol*ntolfact =

0.001 K. The irregularities disappeared after
ntolfact was sufficiently reduced.

The examples show that the estimate for
the non-linear errors can be inaccurate by or-
ders of magnitude. This is probably a gen-
eral problem for time integration, i.e. not
COMSOL specific.

For the case studies, it was found a vari-
able or an expression where irregular behav-
ior would reveal unsatisfactory convergence.
Sufficient accuracy could then be obtained by
lowering the tolerance for the non-linear iter-
ations. This method has some drawbacks:

• There exist no guidelines on how to find
a suitable expression.

• An expression that works well for one
problem may not be sufficient for an-
other one.

• Lower non-linear tolerances will increase
the computational time during all parts



of the simulation, i.e. also where it is not
required to obtain sufficient accuracy.

What is needed is an improved error esti-
mate or some additional, reliable expression(s)
which the program can apply to detect when
the estimate should not be trusted.

Some 20 years ago, the author experi-
enced the same problem using a code for time
integration of ordinary differential equations
(ODEs). At that time, the problem was solved
by monitoring the overall material and energy
balances for the equations involved and reduc-
ing the time step whenever these balances ex-
ceeded a specified tolerance. For this ODE
system it was proven that any deviation from
zero balances would be due to non-linear iter-
ation errors.

Proposal: Monitor the overall fundamental
balances (energy, material, ...) and continue
the non-linear iterations whenever at least one
balance is above its specified tolerance.

This will require modifications in the
COMSOL code and appropriate formulations
by the user. The balances should be formu-
lated such that they will be zero if the non-
linear iteration errors are zero. It remains to
be shown whether this is possible for the finite
element method and the chosen DAE solver.

If the proposal should not be sufficient,
other criteria should be tested. It is then re-
quired that the COMSOL code allows for ad-
ditional, user specified tests, to check if the
non-linear iterations have converged.

Figures 2 and 3 show that the liquid tem-
perature started around 610 instead of 600 ◦C.
The modified start temperature was due to the
standard consistent initialization of the DAE
system in COMSOL Multiphysics. Correct
start temperature can be obtained by turn-
ing off the consistent initialization or reducing
the initial time step. This will improve the
resolution of the initial transient at the cost of
more computational effort. The author recom-
mends that the user should be informed about
the size of the perturbations due to consistent
initialization.

4.3 Smoothing

Without smoothing of the thermal boundary
condition along the vertical inner part of the
crucible, there will be large “overshoot” for
the heat flux around the liquid level, c.f. fig-
ure 5 for epsz = 1.e-6. Such high overshoot
is caused by the use of a rough model for the

inner part of the crucible, and some smoothing
is required to get more realistic results.

Generally, a model should be reasonably
balanced, i.e. when one part of the model is
coarse, other parts should not be too detailed.
The heat flux to the crucible can therefore be
somewhat coarse. The author recommends a
value for epsz around the element size. Fur-
ther, a very fine element grid will not improve
the overall accuracy of the model.

Numerically, table 1 and 2 indicate that
epsz around 1-2 times the element size should
be chosen to reduce the computational time.

Increased (spatial) integration order for
the boundary elements will significantly im-
prove the accuracy of the boundary condition
around the liquid level when epsz is lower than
the size of one element. Significant improve-
ments imply smoother variations when the liq-
uid level changes, which will reduce the com-
putational time, compare table 1 and 2.

5 Conclusions

COMSOL Multiphysics has successfully been
applied to develop a model for inductive heat-
ing. The model can be applied to study oper-
ational conditions, thermal stresses, or design
issues for a high temperature reactor.

Special treatment of the numerical solution
procedure is required for this type of highly
non-linear model.

The present estimate for the non-linear it-
eration errors during time integration can be
inaccurate by orders of magnitude. It is sug-
gested that the overall fundamental balances
(energy, material, ...) are utilized as an ad-
ditional criterion to check whether the non-
linear iterations have converged.

Appropriate smoothing is recommended
along the boundary that couples the lumped
state variables to the finite element field vari-
ables.
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