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Abstract: A model for material damping is pre-
sented in terms of internal friction and in terms of a 
variation of stiffness. In the latter case the idea is 
that the stiffness increases if elastic energy is stored 
and decreases if elastic energy is released. In case 
of a single mass spring system “stiffness” refers to 
the stiffness of the spring; in case of a continuos 
object “stiffness” refers to the Young’s modules. 
The reason for this material damping model is that 
it simultaneously overcomes problems with linear 
viscous damping and with Coulomb damping.  
The reason for its interpretation as variation of 
stiffness instead of internal friction is that this sub-
stantially simplifies the mathematics.   
   
Keywords: material damping; Coulomb damping; 
linear viscous damping; non-linear damping; inter-
nal friction. 
 
1. Introduction 
 

Typical for real world damping is that the 
relative energy loss per cycle of a vibrating object, 
that is the energy loss in a complete cycle divided 
by the total available energy (elastic+kinetic) at the 
beginning of the cycle, is roughly frequency and 
stress-amplitude independent. This holds true for 
many important structural materials, be it more so 
with respect to frequency than to amplitude. Many 
building codes are implicitly based on this prin-
ciple. As a consequence, if e.g. the amplitude of a 
vibrating object halves after say 100 cycles, then 
the amplitude of any other object, made of the same 
material, also will halve after 100 cycles regardless 
its frequency or amplitude. Another 100 cycles will 
halve the amplitude again.   

Linear viscous damping (see fig. 1 left) 
does not reflect this property, as the damping force 
is proportional with the frequency. Hysteretic 
damping seems to remedy this flaw in case of con-
tinuous systems by simply dividing the damping 
force by the frequency. While this brings the calcu-

lations in line with real world damping in case of 
single mode vibrations, it is unclear how “dividing 
by frequency” follows from the theory and how it 
affects linearity or mode coupling.  

Also Coulomb damping (see fig. 1 mid) 
does not reflect real world damping, as its relative 
energy loss per cycle is proportional with the in-
verse of the amplitude, resulting in amplitude that 
declines linearly in time. The sound of a Coulomb 
damped bell would hardly fade away but would 
simply stop on a certain moment.    

To overcome the problems above, another 
damping model is proposed named energy trans-
formation damping. (See fig.1 right) 

Section 2 will treat energy transformation 
damping of a single mass spring system including 
its duality of internal friction and stiffness variation. 
Section 3, 4, 5 and 6 will deal with various aspects 
of energy transformation damping of longitudinally 
vibrating elastic rods. Section 7 deals with damping 
of 2D objects with plane stress. Section 8 links 
stiffness variation with the experiment of A.L Kim-
ball and D.E. Lovell. Section 9 will highlight the 
problems with Coulomb damping, linear viscous 
damping and hysteretic damping. Section 10 gives a 
conclusion.   
 
2. Energy transformation damping for a 
single mass-spring system 
 

See fig. 1 right. If δ=0 then the hinged bar 
that connects the mass to a Coulomb friction ele-
ment is exactly vertical and the force in the spring 
is zero. If the mass is moving then there is always a 
friction force F in the bar, with abs(F) is constant. 
The horizontal component of this force, Fδ/L, is the 
damping force. The clue is that this force acts in the 
same direction as the force in the spring if δ(δt) (the 
product of displacement δ of the mass and its speed 
δt) is positive and in opposite direction if δ(δt) is 
negative.  

From a mathematical point of view we can 

Coulomb damping. Damp-
ing force is (constant) fric-
tion between A and B 

Energy transforma‐
tion damping. L>>δ. 
Damping force is δ 
times friction 
between A and B, 
divided by L 

Lineair viscous damping. 
Damping force is proportio‐
nal to the speed of the mass.  

fig. 1 damping models 

δ=0 
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as well argue that the spring stiffness k becomes 
k+abs(F/L) if δ(δt) is positive  and k-abs(F/L) if 
δ(δt) is negative or in one formula kdyn(amic)= 
k+abs(F/L)sign(δ(δt)). In a real single mass-spring 
system abs(F/L) is a property of the spring since F 
and L do not exist separately. Substituting α for 
abs(F/L)/k  results in kdyn=k(1+αsign(δ(δt))). That 
means that if δ(δt) is positive, that is if elastic ener-
gy is stored, the stiffness is k(1+α). If δ(δt) is nega-
tive, that is if  elastic energy is released, the stiff-
ness is k(1-α).   

Because α is now the relative variation of 
the spring stiffness, with in general α<<1, it is also 
the relative energy loss for any amount of energy 
that is transformed from kinetic into elastic energy 
or vise versa. The equation of a single mass-spring 
system with energy transformation damping simply 
is: 

  
mδtt+kdynδ=0. 

 
It is interesting to note that in contrast with hyste-
retic damping, no reference is made to any harmon-
ic vibration; the expression for the spring stiffness 
simply holds true for any force-strain path. Moreo-
ver the loss of energy is proportional to transforma-
tion of elastic energy into kinetic energy and vise 
versa, explaining the name of this damping model.  
Finally as a result: in case of a harmonic vibration 
the relative energy loss of one complete cycle is 
approximately 4α since all energy is 4 times trans-
formed and is as such frequency and amplitude 
independent.    
 
3. Equation of an elastic rod with energy 
transformation damping 
 

Although it is possible to extend the above 
mentioned approach of material damping to 2D and 
3D cases the focus will be on the 1D case of an 
elastic rod to make the underlying mechanism more 
transparent.  

 
Replacing the spring stiffness by the Young’s mod-
ules E, δ by ux and with α the relative variation of E 
we get:  
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Let u(x,t) be the displacement of a longitudinally 
freely vibrating elastic rod without damping with m 
as distributed mass, A as constant cross-section and 
the Young’s modulus E a function of x, then: 
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Substituting Edyn for E, we find the equation of the 
longitudinally vibrating elastic rod with energy 
transformation damping. 
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4. Single mode vibration 

 
Fig. 2 is an extruded plot of SWI viewed in z-
direction of a vibrating rod with length=pi, initial 
condition u(t0)=sin(3x), boundary u(x0)=0, u(xpi)=0, 
mass=1 and A=1, E=1.  

Note: horizontal displacements of sin(3x) 
are of course unrealistic big if the length of the rod 
is only pi, but geometrical linearity is assumed 
throughout this article. 

The initial condition results in a single 
mode vibration and is as such a special case. As can 
be observed SWI is a function of time only, since 
the blue and red stripes are parallel to the x-axis. 
SWI is either –1 or +1 over the entire length of the 
rod and for that reason not a function of x, so 
SWIx=0.  

Comsol MPH can now directly solve (2). 
As could be expected, the energy loss per cycle 
turned out to be indeed approximately 4α times the 
available energy because in a complete cycle all 
energy is 2 times transformed from kinetic to elastic 
and 2 times from elastic to kinetic. So, as with the 
single mass-spring system, it is both frequency and 
amplitude independent. 

 
5. Multi mode vibration 
 

Fig. 3 is an extruded plot of SWI viewed in 
z-direction of the same rod as in fig. 2 but now with   
initial conditions u(t0)=sin(x)+sin(2x) resulting in a 

 fig. 2
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multi mode vibration. Now clearly SWI is a func-
tion of both time and x and jumps at several loca-
tions in the x-domain from +1 to –1 and from –1 to 
+1. Every horizontal line represents a point of time 
and each crossing of such a line from red to blue or 
from blue to red marks a jump of SWI.  
Here non-linearity kicks in because SWIx 
represents mode coupling. It simply does not exist 
with initial conditions u(t0)=sin(x) or u(t0)=sin(2x) 
but it pops inevitably up for the initial condition 
u(t0)=sin(x)+sin(2x). SWIx has the value +2/-2 at 
the transition blue-red respectively red-blue and is 
everywhere else zero. To solve (2) we replace 
“sign” by its smoothed version “flsmsing”. 

Also pre-stressing of the rod always results 
in non-linearity even in case of a single mode vibra-
tion. Consider for example a rod with length pi, 
initial condition u(t0)=x+sin(x), boundary condi-
tions u(x0)=0, u(xpi)=pi, mass=1 and AE=1. This 
rod is pre-stressed because of the linear part of the 
initial condition in combination with the second 
boundary condition. In this case always an alternat-
ing blue-red / red-blue transition exists in the mid-
dle of the rod and hence SWIx pops up despite the 
fact that it is zero for an initial condition u(t0)=x or 
u(t0)=sin(x). The most important difference be-
tween the rod of section 4 and the pre-stressed rod 
is that the former releases or stores elastic energy 
over its full length where the latter releases elastic 
energy in one half while storing it in the other half. 
The released and the stored amount of energy is not 
equal however; the balance transforms to kinetic 
energy.  

So obviously in case of multi mode vibra-
tion and or pre-stressing, not all energy is trans-
formed from kinetic to elastic and vise versa. Part 
of the elastic energy is relocated from one spot of 

the vibrating object to the other and the rest of the 
energy is transformed. Relocating also means stor-
ing and releasing and hence energy loss. For that 
reason the name energy transformation damping is 
only 100% adequate in case of an object with a 
single mode vibration without eigen stresses. The 
bottom line however is that equation (2) automati-
cally keeps track of all these phenomena so there is 
not too much reason to worry about the name of the 
damping model. Just relax and let Intel and Comsol 
do the hard part of the job.  
 
6. Results 
 
Implementing equation (2) for the rod of section 5 
with COMSOL Multiphysics is remarkable simple.  
Select 1D; PDE Modes; PDE Coefficient Form. 
Make global expressions SWI=flsmsign(ux*uxt), 
A=1, E=1, m=1, α=0.1 (α is too high but could be 
reasonable for soil mechanics). 
Subdomain Settings: fill in for c AE(1+αSWI) and 
for ea m. All other symbols are 0. The equation is 
now interpreted as: 
 

m(∂2u/∂t2)- ∂{AE(1+αSWI)( ∂u/∂x)}/∂x=0 
 

and this is indeed the counterpart of  (2). 
Length of the rod is pi with 30 elements Lagrange 
Quadratic. Init u(t0)=sin(x)+sin(2*x). Boundary 
u(x0)=0 u(xpi)=0  
Solver parameters: generalized alpha, max time step 
0.001. Accept the default values for all other input. 

See for solution u figure 4. 
  

Obviously Comsol MPH can solve (2). The vertical 
axis shows the horizontal displacements of material 
points. The evolution of the solution u differs sub-
stantially from similar solutions with Coulomb 
damping, linear viscous damping and hysteretic 
damping as given in section 9.  

Fig. 5 is a plot of the same case as fig. 4 
however now the rod is pre-stressed with ux=0.5. 
Displacements u=0.5x due to pre-stressing were 
subtracted from the solution to make figure 4 and 5 
comparable. As can be observed pre-stressing in-
creases the damping. Moreover the vibration stops 

Fig. 3 

fig. 4 solution of  equation (2) 
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on a certain moment rather than that it fades away 
as in the non pre-stressed case of fig. 4. In fact if 
the pre-stress is much higher that the stress varia-
tion caused by the vibration we end up with Cou-
lomb damping. (See also section 9)  

 
 
7.  Plane stress   
 

As could be expected energy transforma-
tion damping is also applicable to higher dimen-
sions such as plane stress. We can directly build it 
in in the structural mechanics mode. A vector prod-
uct replaces ux(uxt) as argument for the sign func-
tion. In case of plane stress elastic energy is stored 
if the expression below is positive and released if 
negative. 
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u is displacement in x direction  
v is displacement in y direction 
γ is Poisson modules 
 
Suppose γ=0.3 than make global expression In= 
(ux+.3vy)uxt+(.3ux+vy)vyt+.35(uy+vx)(uyt+vyt) 
Area lx=π ly=π/2,   
Mapped mesh, mesh size normal 8x15 elements, 
Lagrange Quadratic. 
Subdomain settings:  
E=1+0.1*flsmsign(In),  γ=0.3, ρ=1, thickness=1. 
Init u(t0)=(sin(x)+sin(2*x))*sin(2*y) All boundaries 
Rx=0 Ry=0 

Tuning the solver parameters is quite a 
challenge; the following parameters gave a con-
vincing result after 20 minutes’ run on a dual core 
3 GB laptop using version 3.5a: 
Solver parameters: 
Range (0,0.2,30), Generalized alpha, Specified 
times, Free. Init step 0.0001, max step auto, time 
step increase delay 50, amplitude factor 1, Jacobian 
update on every iteration. All others default. 

 
8. Energy transformation damping and the 
experiment of Kimball and Lovell 
 

In 1927 A.L. Kimball and D.E. Lovell car-
ried out an experiment leading to the understanding 
that relative energy loss per stress cycle is indepen-
dent of the rate of change of the stresses and practi-
cally independent of the stress amplitude.  

(See fig. 6) The bar to be tested is sup-
ported by two bearings and connected to an engine 
by means of a flexible coupling and carries an ad-
justable load at its cantilevering end. As long as the 
engine is switched off it is self evident that the bar 
bends in a vertical plane but as soon as the engine is 
switched on, the plane of bending tilts over an an-
gle Φ around the axis trough the two bearings. At 

the time it was very surprising that Φ turned out to 
be fully independent of the speed of the engine and 
to a great extent independent of the load as long as 
the load was not too big. The conclusions of the 
authors, although otherwise formulated, boiled 
down to this: 

If Δ is the relative amplitude decay of a vi-
brating object made of the same material as the 
rotating bar, then Φ=Δ/π. (The relative amplitude 
decay is the amplitude decay over one cycle divided 
by the amplitude at the beginning of the cycle.)  

fig. 5 solution (2) for pre-stressed  rod 

fig. 6 experiment of Kimball and Lovell 

Engine Bar to be 
tested 

Rotation 
direction 

Bearing Load 

Cross-
section 

Rotation 
direction
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The question is now: does the approach 
with the dynamic Young’s modules lead to the 
same conclusion? The answer is yes. 
 Consider the cross-section of the bar as 
given in fig. 6. Because of the rotation of the bar, 
the absolute value of the stress in quadrant 1 and 3 
is decreasing since all material points of these qua-
drants move toward the neutral axis. Similarly the 
absolute value of the stress of quadrant 2 and 4 is 
increasing. For that reason the dynamic Young’s 
modules of quadrant 1 and 3 is E(1-α) and of qua-
drant 2 and 4 E(1+α). While the moment mx acts 
around the x-axis only, bending is around the x-axis 
and the y-axis according to the following equation: 
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• Ixx=Iyy is simply the inertia moment of a 
circle=πR4/4, since the effects of Edyn can-
cel out.  

• Ixy=Iyx is 4α times the inertia product of a 
quarter circle with respect to the x- and y- 
axis=αR4/2, because all quadrants add up 
since quadrant 1 and 3 with –α have also a 
negative xy product. 

• Κx and κy are the curvatures around x-axis 
and y-axis respectively. 

 
Now with (3) we can calculate κy/κx as 
(αR4/2)/(πR4/4)=2α/π. So κy/κx is obviously con-
stant for each section of the bar, implicating that the 
plane of bending of the bar tilts over a angle 
Φ=2α/π. However since 4α is the relative energy 
loss of one cycle, the relative amplitude decay is 2α 
and hence 2α=Δ and Φ=Δ/π.   QED    
   
9.  Alternative damping models 
 
It is interesting to see where coulomb damping, 
linear viscous damping and hysteretic damping fail 
if applied to a simple continuous system as a rod. 
 
9.1 Coulomb damping  
 
Let F be the force in a longitudinally vibrating 
elastic rod with Coulomb damping and β a material-
damping constant, then: 
 
F=AE∂u/∂x+βAEsign(∂2u/∂x∂t) and the equation of 
the rod: m∂2u/dt2-∂F/∂x=0 
or with SWI=sign(∂2u/∂x∂t): 
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See for a solution of (4) the extruded plot fig. 7. 
The boundary and initial conditions are the same of 
those of fig. 4 and β=0.1. Only the type of damping 
is different.  The subdomain settings are: c=1, ae=1 
and γ=-0.1*flsmsingn(uxt,0.01).  

It appears that the amplitude declines li-
nearly in time. For that reason we conclude that 
Coulomb damping overestimates (underestimates) 
damping of amplitudes smaller (bigger) than the 
amplitude for which β holds true.  
 Typical for Coulomb Damping is that after 
vibrating a small deformation remains. This is also 
the case with energy transformation damping in 
combination with pre-stressing. Coulomb damping 
is non linear. 
 
9.2 Linear viscous damping 
 
Let F be the force in a longitudinally vibrating 
elastic rod with linear viscous damping and γ a 
material-damping constant, then: 
F=AE∂u/∂x+γAE∂2u/∂x∂t and the equation of the 
rod: 
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See for a solution of (5) the extruded plot of fig. 8.  
E=1, A=1, l=pi, m=1, γ=0.1 

Time-domain is 0-7.3 sec, initial condition is: 
u(t0)=sin(x)+sin(10x). The subdomain settings are 
c=1, ae=1,  gamma=-0.1*uxt.  

Fig. 7 Coulomb damping 

Fig. 8 linear viscous damping 
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 It appears that the amplitude decay of 
sin(10x) is very big. In fact its damping is nearly 
critical while damping of sin(x) is far from critical. 
For that reason we conclude that linear viscous 
damping overestimates (underestimates) damping 
of frequencies higher (lower) than the frequency for 
which γ holds true.   

In a universe with linear viscous damping all 
musical instruments have the same timbre if we are 
at least lucky enough that they are not over critical-
ly damped or hardly damped at all! 

 
9.3 Hysteretic damping 
 
The equation of a longitudinally vibrating elastic 
rod with hysteretic damping is: 
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The idea behind hysteretic damping is that each 
principle mode gets its own damping characteristic.  

Take a rod with length pi and suppose the 
damping constant γ/ω1 for the first principle mode 
sin(x) is 0.1, then the damping constant γ/ω2 for the 
second principle mode sin(2x) is 0.1/2=0.05 be-
cause ω2/ω1=2. For the third principle mode sin(3x) 
it is 0.0333 and so on.  

This will certainly result in the same rela-
tive amplitude decay for sin(x) as for sin(10x) in 
fig. 8 and is as such in line with the Kimball Lovell 
experiment. In case of linear viscous damping the 
energy that is dissipated at a certain location per 
unit of volume is γEuxt (e.g. Watt/m3). However 
the problem with hysteretic damping is that there is 
no such unique relation between energy dissipation 
and uxt as can be concluded from the following 
example (see fig. 9):  

Consider two identical rods with length pi 
and ut=Vsin(x) for rod 1 and ut=½Vsin(2x) for rod 
2. P1 and P2 are points located such that the slope 
of the red lines is the same, e.g. at distances pi/4 
and pi/8 respectively. Since the slopes are the same, 
also uxt is the same for P1 and P2, however the 

energy dissipation in case of hysteretic damping at 
P1 is 2 times bigger than at P2 because ω2=2ω1. 
This indeed proves that in case of  hysteretic damp-
ing there is not an unambiguous correlation be-
tween energy dissipation and uxt.   

But if not, how can a material particle “be 
aware” of principle modes and “know” what ωi to 
choose? The theory of hysteretic damping does not 
give a clue anyway and the best thing we can hope 
for is that it is correct but incomplete. However, in 
contrast with energy transformation damping, the 
nature of non-linearity or mode coupling remains 
fuzzy.  
 
10. Conclusion  
 

Damping is non linear and should not be 
squeezed into a linear model. Coulomb damping is 
a non-linear damping model but its basis is wrong. 
The issue is not that increasing or decreasing of the 
strain controls the direction of the friction. The 
issue is that increasing or decreasing of the absolute 
value of the strain controls the stiffness. Exactly 
that is the basis of energy transformation damping. 
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