Multiphysics Modelling in the Steel Industry

Filip Van den Abeele and Patrick Goes

OCAS : a joint venture between ArcelorMittal and the Flemish Region

OCAS and ArcelorMittal R&D

- Joint venture between steel supplier ArcelorMittal and the Flemish government
- Innovation and expertise centre for metal oriented research and development

OCAS, an R&D service provider

Steel Solutions and Design

New alloys and coatings

steel grades for energy transport

steel grade development for plates

Surface functionalisation

self-cleaning surfaces

improved efficiency electrical steel

steel grades for the future hydrogen economy

lab scale hot rolling

weight reduction thanks to ultra high strength steel

increased corrosion resistance

easy manufacturing: forming, painting, glueing, enamelling,...

heat transfer coatings

Application technology

smart materials selection

enhanced

aesthetics

structural design of components

welding

metal sheet rapid prototyping

FEM simulations: forming, electromagnetic, heat,...

product safety (risk assessment of welding fumes, CrVI, VOC,...)

4

COMSOL is our Swiss Army Knife

Vortex induced vibrations

COMSOL is our Swiss Army Knife

Enamelled Steel Parts

Enamelled Steel Parts

ed, or repr AL – Privile OCA

led Information

S S

Thermal Distortion in Enamelled Steel Parts

Klotz test to measure thermal distortion

- Steel specimen is coated with ground enamel (both sides)
- One thick layer of top enamel is applied at one side
- Sample is heated, and temperature/displacement are measured

Cannot be disclosed, use CONFIDENTI/

information of OCAS

 Conductive Media DC Mode to calculate distribution of electric current in the specimen...

$$-\nabla \cdot \left(\lambda \nabla V - J^{ext} \right) = Q_j$$

Cannot be disclosed, use CONFIDENTIA

uthorization of OCAS information

 ...Obtained current acts as coupling variable to calculate the resistive heating...

$$-\nabla \cdot \left(\lambda \nabla V \right) - J^{ext} = Q_j \quad \longrightarrow \quad Q_{th} = \lambda |\nabla V|^2$$

• Which is the source term for the transient conductive heat equation...

$$-\nabla \cdot \left(\lambda \left(\nabla V\right) - J^{ext}\right) = Q_j \longrightarrow \left(Q_{th}\right) = \lambda \left|\nabla V\right|^2$$
$$\rho C \frac{\partial T}{\partial t} - \nabla \cdot \left(k \nabla T\right) = Q_{th}$$

• ... Finally, thermal deflection is governed by temperature field

$$-\nabla \cdot \left(\lambda \left(\nabla V\right) - J^{ext}\right) = Q_{j} \longrightarrow \left(Q_{th}\right) = \lambda \left|\nabla V\right|^{2}$$

$$\rho C \frac{\partial \mathbf{T}}{\partial t} - \nabla \cdot \left(k \nabla \mathbf{T}\right) = Q_{th}$$

$$\frac{\delta(\mathbf{T})}{L} = \frac{L}{H} K \int_{T_N} (\alpha_s(\tau) - \alpha_e(\tau)) d\tau$$

we catalyse

Magnetic Pulse Forming

 Magnetic Pulse Forming (MPF) is a high speed metal forming technique in which transient electric currents are generating magnetic forces to form metal workpieces

Numerical Modelling of MPF

- Numerical model requires the simultaneous solution of
 - The electric circuit
 - The electromagnetic equations
 - The temperature distribution
 - The mechanical response

Highly complex and strongly coupled problem, calling for

- multiphysics capabilities
- weak PDE formulation
- direct coupling

Free deformation of a steel tube

Free deformation of a steel tube

Free deformation of a steel tube

Vortex shedding

Even moderate currents can induce vortex shedding, alternately at the top and bottom of the pipeline, at a rate determined by the flow velocity

Each time a vortex sheds, a force is generated in both the in-line and cross-flow direction, causing a multi-mode vibration

This vortex induced vibration can give rise to fatigue damage of subsea pipeline spans, esp. in the vicinity of the girth welds

Flow patterns past a pipeline

Flow regime dependent on Reynolds number

$$\operatorname{Re} = \frac{UD}{v}$$

Vortex shedding governed by Strouhal number

$$St = \frac{f_s D}{U}$$

- Fluid flow velocity U
- Outer diameter D
- Kinematic viscosity υ
- Shedding frequency f_s

Flow patterns predicted by Comsol

Vortex shedding predicted by COMSOL

 For a Reynolds number Re > 300, a Von Karman vortex street appears with a stable frequency and amplitude

Vortex induced vibrations

 Submarine pipelines, subjected to vortex induced vibrations, tend to trace an '8' shaped motion

 These motions can induce fatigue damage in the pipe itself, the girth welds or the coating

 How can we avoid (or at least reduce) the effects of vortex induced vibrations?

Mitigation measures

- Several mitigation measures have been developed to avoid or reduce the effects of vortex induced vibrations:
 - Control cylinders
 - Helical strakes
 - Fairings
 - Splitters
 - Spoilers
 - Others

 COMSOL Multiphysics provides an elegant numerical tool to compare these measures, and evaluate their effectiveness

Control cylinders

Control cylinders stabilize the near wake and

cause the wake to be essentially time-independent

- Resulting decrease in drag, and elimination of the fluctuating lift
- Only useful in unidirectional flows, and location is Re-dependent

Helical strakes versus fairing

- Helical strakes disrupt the correlation of vortex shedding along the pipeline span, hence reducing the vortex strength and the magnitude of the oscillatory lift forces
- Fairings attempt to streamline the flow, in order to reduce the size of the vortices while they are adjacent to the cylinder

Splitters and spoilers

 Vortex shedding can be reduced by either splitting or spoiling the turbulent flow in the pipeline wake

Splitters and spoilers

- Vortex shedding can be reduced by either splitting or spoiling the turbulent flow in the pipeline wake
- Note that spoiler plates can still be successfully applied when the flow is no longer unidirectional

Other mitigation measures

- Several other add-on devices for suppression of vortex induced vibration exist, like
 - axial slats
 - shrouds
 - ribboned cables
 - pivoted guiding vanes

Comparing mitigation measures

we catalyse you

COMSOL is our Swiss Army Knife

Cannot be disclosed, us CONFIDENTI

- Enamel solidification
- Magnetic Pulse Forming
- Electromagnetic modelling of electric machines
- Vortex Induced Vibrations
- Model Identification for Orthotropic Materials
- and many more...

OCAS delivers added value

Steel design solutions

Material characterisation

OCAS: we catalyze your growth!

OCAS NV

Address: JF Kennedylaan 3, B-9060 Zelzate, Belgium

T: +32/(0)9.345.12.11

F: +32/(0)9.345.12.04

E-mail: <u>services@ocas.be</u>

Web: www.ocas.be

