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Abstract: We present here our work on 
deconvolution of a magnetic probe to measure 
electromagnetic emissions in near-field zone. To 
achieve this work, we have chosen a rectangular 
waveguide (WR90) as a radiating structure. 
Theoretical near-field is simulated using a FEM 
software (COMSOL) and also obtained by using 
a program based on transverse operator method 
(TOM) ,that lead to a very good field 
reconstruction after deconvolution due to its 
precision. 
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1. Introduction 
 

The presence of electric or magnetic probes 
used in near-field measurements surely perturbs 
the measured parameters .In the case of  the loop 
magnetic probe used here, the induced 
electromotive force is proportional to the number 
of field lines crossing through it .Probes’ 
influence has an effect of integration which is 
manifested through reducing the spatial 
resolution of field’s real image. 

In order to identify then correct the effect of 
these perturbations .We have convolved the 
field’s original distribution f(x,y) with response  
function rp(x,y), characteristic function of the 
probe  

 d(x,y) = rp(x,y) *  f(x,y) +n(x,y)      …  (1) 

For a known source f(x,y) near-field 
measurement d(x,y) in optimal conditions 
minimizes measurement’s noise  n(x,y). We 
obtain probe’s transfer function rp(x,y) by 
deconvolution  process explained below. 
 
2. DECONVOLUTION THEORY 
 

 First , suppose that the probe is placed in a 
fixed position with respect to the measurement 
antenna .Output voltage of the probe depends on 
field’s value at the probe’s position  in the 
presence of the probe itself . In time domain, we 
define the following: rp(t) probe’s transfer 

function b1(t) field value emitted by the antenna 
at the position of the probe, and bp(t) probe’s 
output voltage. Neglecting noise and considering 
that the probe making scan at discrete points 
(output function does not depend on probe’s 
scanning surface) these parameters will be 
related by convolution’s law   

bp(t) = rp(t)*b1(t)    …      (2) 

Replacing b1(t) by Dirac-delta function 
(spectrum B1(ω) will be constant not depending 
on the pulsation while rp(t) is measured directly). 

 

               
Fig.1  Schematic diagram of a measurement system 
 
      In measurement phase, problem 

complexity rises slightly since we have to 
dispose (carry out) many measurements to 
describe Dirac frequency response. Using 
network analyzer, we have to measure probe’s 
output signal spectrum in a wide frequency band 
at a constant input power which is not easy to do 
because the used structure is a rectangular 
waveguide having a limited frequency band. In 
this case, we have to use a structure transporting 
a TEM mode  and the probe’s response function 
will be simply the inverse Fourier transform  of 
measured spectrum  

( ) ( ){ } [ ], ., 0,t for ctω ω= = ∞p p 1r = B B-1
F ..(3) 

The adopted approach in this article is to 
define and solve the deconvolution problem in 
spatial domain or in other words our aim is to 
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increase the spatial resolution of near-field 
measurements. 

The formulation of near-field measurements 
correction presented here is an adaptation of 
near-field measurements theory elaborated by 
Kerns [1] 

Kerns hypothesis considers that multiple 
interaction between probe measured structure 
(circuit) are negligible, or we can say that the 
radiated field by induced sources at the level of 
the probe is too small for its reflection at 
measured structure’s (circuit) level to be 
recaptured by the probe.  

Probe’s output signal under incidence of 
circuit’s radiated field in measurement plane 
(z=h) is given by the following plane wave 
decomposition  
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3. OPEN GUIDE MODEL in COMSOL and 
TOM. 
 
 As mentioned above our model is a rectangular 
waveguide radiating into free space as in the 
figure (2). There are many methods to model this 
guide from which we used two: COMSOL 
 ( FEM) and transverse operator method (TOM) 

 
               
               Fig.2 – Radiating open waveguide  

 
Finite element method is an efficient 

technique to analyze not only simple structures 
but also complex ones giving precise and fast 
solutions to different systems of differential 
equations. 

FEM initially used by P. Silvester[2] for 
electromagnetic field problems and produced 

numerical algorithms in many fields of 
applications, dividing the problem into small 
divisions which may be composed of  triangles, 
tetrahedrals, or their combination that may adapt 
simply to the geometry . 

FEM mesh elements may be simply modified 
(fine or coarse) in different regions of the 
structure, giving rise to precise solutions as 
compared to other analytical methods. 

COMSOL multiphysics facilitates all steps in 
modelling process as defining the geometry, 
specifying the physics, mesh generation, solving 
and then post-processing the results as we have 
done in our rectangular waveguide (WR90)  
which is designed to maintain energy losses due 
to reflections at a minimum in our band  of 
operation between 8.2 GHz -12 GHz. 

To study the characteristics of this 
waveguide, consider a wave travelling through 
the rectangular waveguide into free space. The 
S-parameters are calculated as functions of the 
frequency leading to the deduction of 
admittance.  

The input port is excited by a TE10 wave, 
which is the only propagating mode, with an 
input power 1W in the second phase of 
simulation process while in the first one ,we 
have solved only for effective mode index.  

The model treats the metallic walls of the 
waveguide as perfect electric conductors 
satisfying the boundary condition 

  0n× Ε = …        (5) 

The propagating mode is obtained from the 
solution of an eigenmode problem at the first 
port at which the solved eigenmode equation is 

2 2 2 2
0( ) ( ) 0n nn n kβ− −∇× ∇×Η + − Η =   ….(6) 

Here Hn is the component of the magnetic 
field perpendicular to the boundary, n the 
refractive index, β the propagation constant in 
the direction perpendicular to the boundary, and 
k0 the free space wave number. The eigenvalues 
are λ = −jβ.  

The effective mode index is  β/k0 = 0.755 at 
10GHz frequency (only real one is taken into 
account), corresponding to the TE10 mode. 
 
  



 
               
Figure 3: Input port total energy density lead to the 
generation  of first eigenmode with effective mode 
index =0.755 

 
Also we’ll explain TOM  theory briefly 
In order to have an equation for the 

electromagnetic field at the flange plane,we can 
rewrite Maxwell’s equation, declaring that z is 
the direction of propagation , in the form  
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 φ ′ is the transversal field vector  

L̂   is the deduced transverse operator of 
Maxwell’s equation [3]. 

 
A particular solution of this equation in the 

presence of propagating waves in free space is 
obtained in the form of these two equations [3] 
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Where 0φ  corresponds to fields at the flange 

plane z=z0 and 0̂φ  is its two dimensional Fourier 

transform. 
In the case where the structure is fed by a 

TE10 mode, the fields at the flange level 
(discontinuity level) are a linear combination of 
TE10 (incident and reflected) as high order modes 
generated by the discontinuity or existing at its 
level. 

Equation 8 permits to obtain the generalized 
S matrix of the structure; later 0φ  is deduced 

allowing to calculate the radiated fields into the 
free space by using eq. 9. 

 
Where Rp(kt) is the Fourier transform of the 

probe’s characteristic function  and B1(kt) is total 
plane waves which contributes to antenna’s 
radiation spectrum . 

Calculation formula of emission spectrum of 
an antenna with probe correction is given by  
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The double integral in the right side of eq 
(10) is simply the Fourier transform of field data 
obtained from near-field measurements by planar 
scanning in the surface of measurements. 

The radiated field to free space is found 
again by the product of probe’s characteristic of 
inverse reception and Fourier transform of 
probe’s output obtained by measurements. 

Another hypothesis used in this approach of 
deconvolution is that the probe is only sensible 
to certain field components. In our case, a 
magnetic loop probe is used, sensitive essentially 
to one of magnetic field transverse components. 
In fact, this hypothesis is valid because we have 
measured an attenuation greater than 20dB in 
cross polarization with respect to nominal 
polarization of the loop. 

 
 Where  bp(r0) corresponds to a modelled 

radiating structure, the same approach will be 
employed in order to determine the characteristic 
function of the probe, for this reason eq (10)  
may be rewritten in the following form 
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4. Results and Discussion: 
 
Magnetic field x-component  is calculated using 
eq9 on a plane parallel to that of the flange at a 
height of 10mm. A simulation is made also using 
COMSOL multiphysics[4]. The comparison is 
shown in figure 4 for normalized Hx magnitude. 
We notice the same variation with results 
obtained by TOM are more concentrated and 
give more precision in spatial resolution. 



 

 
(a) 

  

                                                                     
(b) 

Fig 4: Hx component’s comparison. 
Hx component at 10mm height obtained by  TOM (a) 

and COMSOL (b) respectively 
 
 
Reflection coefficient is calculated using 
COMSOL and TOM showing good agreement 
between them.  
 

 
               

Fig.5: S11(dB) as a function of frequency. 
 
 

Moreover, figure (6) shows the equivalent 
admittance of the structure, given by  

Y=(1-S)/(1+S) 

We notice that COMSOL admittance is slightly 
far from that of TOM except near to the 
frequency 10GHz. 
 

 
               

Fig.6: Admittance as a function of frequency. 
 
This may be explained by the finite size of entire 
structure while in TOM we consider an infinite 
half space. 
Other tests will be presented during the 
conference. 
 
4.1. Probe Deconvolution in Transverse 
Magnetic Field 
Measurement is done to obtain transverse 
magnetic field component Hx on a surface 
60*60mm2 at a height of 10mm with a step 
1mm. 
Measurements made in a convenient 
environment employing absorbers to avoid 
reflections caused by metallic parts of 
workbench at the flange level. 
 



 
Fig.7: Comparison between measured (a), theoretical 
(c) and corrected (b) Hx components 
 
Fig (7) presents Hx measured, reconstructed by 
deconvolution and theoretical one. 
A good agreement is shown between theoretical 
and reconstructed Hx component. Hx are 
normalized for better comparison. 
 
 
5. Conclusion 
Deconvolution of a probe is made by using an 
open waveguide and its precise model by TOM. 
Comparison using FEM method as COMSOL 
and other methods will be presented and 
discussed during the conference. 
Probe function’s application to other structures 
rather than open guide will be presented soon. 
We mostly consider planar structures that better 
modelize measurement conditions of 
microelectronic circuits which is an interesting 
application for these techniques of 
measurements. 
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