
INTRODUCTION: In this work, a mathematical model
based on porous electrode theory was developed in
COMSOL Multiphysics to simulate discharge of primary
AA Zn/MnO2 batteries. This model was applied to:
• Visualize and verify mechanisms that control

battery behavior during discharge;
• Increase efficiency of R&D by screening and

optimizing battery design concepts, thereby
reducing the amount of samples built and tested.

Anode: 𝑍𝑛 + 4𝑂𝐻− → 𝑍𝑛 𝑂𝐻 4
2− + 2𝑒−

𝑍𝑛 𝑂𝐻 4
2− → 𝑍𝑛𝑂 + 2𝑂𝐻− +𝐻2𝑂

Cathode: 𝑀𝑛𝑂2 +𝐻2𝑂 + 𝑒− → 𝑀𝑛𝑂𝑂𝐻 + 𝑂𝐻−

Overall: 𝑍𝑛 + 2𝑀𝑛𝑂2 +𝐻2𝑂 → 𝑍𝑛𝑂 + 2𝑀𝑛𝑂𝑂𝐻

MODEL EQUATIONS: PDE interfaces were used to
solve for 18 variables in a two step (stationery and
time dependent) study.

RESULTS: Simulated battery voltage is a function of
discharge time, current, and intermittency. Local trends
in internal properties show an accumulation of discharge
reaction product near the separator interface and a
depletion of reactant species both near the particle
surface and near the separator interface.

CONCLUSIONS: The predicted battery performance
shows good agreement with experiments under various
conditions. These results provide battery engineers
better understanding of limiting mechanisms that would
otherwise be costly and laborious to explore. Further
experiments to refine parameters are planned to
increase the fidelity of the model.
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Figure 2. Modeled and experimental discharge behavior of Zn/MnO2 cell 
under (a) continuous constant current, (b) ANSI pulsed constant current, 
and (c) ANSI pulsed constant power conditions.

Figure 3. Internal cell properties at various depths-of-discharge (DODs) 
during 0.75 A discharge, including (a) actual anode cross-section, modeled 
(b) anode volume composition, (c) KOH concentration across ZnO 
microlayer and thickness of that layer, and (d) CH/CHm in MnO2 particle as a 
function of position at 13% (left), 26% (middle) and 40% (right) DODs.

Figure 1. Schematic of a cylindrical AA Zn/MnO2 cell
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