UC SANTA BARBARA engineering

The convergence of research and innovation.

Improved Charge Amplification in the Liquid-Metal Microfluidic Portable Energy Transducer (LiMMPET)

10/3/2019

S. MacKenzie, A. Eden, M. Prichard, B. Dutcher, C. Meinhart, D. Huber, M.T. Napoli, D. Weld, S. Pennathur Department of Mechanical Engineering, University of California, Santa Barbara Department of Physics, University of California, Santa Barbara

Background: Energy Harvesters

Wang et al., Microsyst Technol (2009) 15:941–951

Electromagnetic

Source: R. Niewiroski, Wikipedia

Gupta et al., Broadband Energy Harvester, Scientific Reports (2017)

Hybrid

Yang et al., Nano Energy (2016) 31:450-455

Reverse Electrowetting

Dagdeviren et al., Conformal piezoelectric energy harvesting, PNAS (2014)

Piezoelectric

F.-R. Fan, et al., Flexible triboelectric generator, Nano Energy (2012)

Triboelectric

Schematic of the LIMMPET device.

Wimshurst machine.

arborsci.com/products/wimshurst-machine

LIMMPET device.

000000000 q_f +++++++++++ q_i q_i q_i 100 q_f +++++++++ ++++++++ ---- q_i q_i q_i q_f q_i q_i q_i

Neutral droplet q_f experiences induced charge separation due to charged droplets q_i in lower channel.

Charge is transported out of q_f if connected to a conductor

Droplet q_f maintains net charge imbalance after pulling away from conductor

Electrostatic induction causes net charge imbalance

Schematic of the LIMMPET device.

Operation

4-Step Energy Harvesting Process

Device Performance

Breakdown-limited max power output	$P_{max} = \frac{q_{max}}{C_{droplet}} 2\pi\sigma_{max}vw = \varepsilon_0\varepsilon_r E_{max}^2\pi w^2v$
Power dissipated due to viscous drag	$P_{dissipated} = \Delta P = 32\eta L v^2$
Efficiency	$\alpha = \frac{P_{max}}{P_{max} + P_{dissipated}} = \frac{\varepsilon_0 \varepsilon_r E_{max}^2 \pi w^2 v}{\varepsilon_0 \varepsilon_r E_{max}^2 \pi w^2 v + 32\eta L v^2}$
Efficiency	lpha > 95%

Theory

Charge Amplification Factor

$$\Gamma = \frac{q_f}{q_i}$$

Where q_f is the induced charge on a droplet and q_i is the charge on an inducing droplet.

Effect of Γ on Power Generation

2D COMSOL Multiphysics ® Model: Overview

Approximately 181,000 mesh elements in model.

Design Process

1. Channel width ratio

Design Process

- 1. Channel width ratio
- 2. Curvature

Design Process

- 1. Channel width ratio
- 2. Curvature

3. Channel gap distance

Design Process

- 1. Channel width ratio
- 2. Curvature
- 3. Channel gap distance

1.43

Results – Charge Amplification Factor

Fabrication and Testing

Summary

- COMSOL Multiphysics[®] was used to improve charge amplification factor in the LIMMPET.
- Numerical analysis demonstrated the importance of key geometric parameters such as channel width ratio and curvature.

Future Directions

- Match experimental charge accumulation with predicted charge amplification factor.
- Model the full dynamic process, including droplet generation and flow dynamics, in COMSOL Multiphysics[®].

Thank you!

Questions?