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Model the Behavior of Electrons 
Generated by the Detection of 
Radiation

• Measured radiation is typically gamma 

or neutrons.

• Typical detector is cylindrical with a thin 

anode wire at its center.

• Through direct or indirect means the 

radiation generates electrons in the gas.

• These electrons will accelerate in the 

electric field and generate secondary 

electrons in order to amplify the 

generated signal.

• The final charge pulse is routed to an 

amplifier for analysis.
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3He Neutron Reaction

• Used in the detection of neutrons in gas 

filled detectors.

• 3He consists of 2 protons and 1 neutron. 

Common 4He has 2 protons and 2 neutrons.

• Helium-3 is one of the few elements that 

has a high cross-section for neutron 

capture.

• Natural abundance is very rare, only 

0.000137% of Helium on Earth

• Gas must be generated from the decay of 

tritium

• Neutron capture generates a proton and a 

triton which then generate electrons in the 

gas which can then be measured.
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• Drift Velocity

• Townsend Coefficient

Determine electron transport characteristics

Model these for different conditions

• Gas Mix and Pressure

• Properties will be determined as a function of electric fields

Chose conditions that are verifiable using available data

• To meet this requirement a static electric field was applied

• This geometry represents a parallel plate configuration

Once verified more complex fields and geometries can be tackled
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Drift Velocity Modeling

• Electrons released into the gas under a 

constant electric field.

• Initial study performed to determine the 

effect of the solver time step on the result.

• Selected the following gases.

Ar/CH4 (90%/10%)

Ar/CH4 (80%/20%)

He/CO2 (90%/10%)

He/CO2 (80%/20%)

• Electric fields values from 103-104 V/cm
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Solver Time Step

• From the collision cross section the 

collisions/sec can be determined for a given 

pressure (1 atm used in these models).

• General guidance is to use a solver time 

step that is 10x smaller than the time 

between collisions

• Time steps evaluated were 10-12, 10-11, and 

10-14 seconds

• Note that time steps in the “Study Settings”  

are not the same as “Solver Time Steps”.

• Results for these parameters are shown on 

the graph to the left.
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Drift Velocity Results
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Townsend Coefficient

• Townsend coefficient (α) is the number of 

collisions per unit distance, typically cm-1.

• Electron multiplication factor or “gas gain” 

is related to the coefficient as follows, 

where d is the distance the electrons travel 

in the direction of the electric field. 

𝑔𝑎𝑖𝑛 = 𝑒𝛼𝑑

• The coefficient to gain relationship only 

applies to the uniform electric field case.

• More complex fields and geometries will 

require modeling of secondary electrons
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Lessons Learned

• Electrons released into the gas do not reach their steady 

state velocity immediately.

• To calculate the study state velocity the initial transient 

conditions should be ignored

Townsend Coefficient and Gas Gain

• Other non-modeled effects play a role in the eventual gas gain. Most 

notable is referred to as the Penning effect.   Atoms in an excited 

state transfer energy thereby releasing free electrons.

• Simulations require very small time steps limiting the use cases 

when electron trajectories are relatively long.  This is especially an 

issue when simulating large numbers of secondary electrons.

Drift Velocity




