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Abstract: The safety of large civil structures is 
often evaluated by means of numerical models 
based on the Finite Element Method (FEM). In 
this frame, the choice of a constitutive law able 
to represent the complex mechanical behavior 
of concrete is a key point. 
The classical approaches, whose theory is 
formulated in terms of stress and strain tensors 
and their invariants, are generally able to 
simulate in a proper way only a few specific 
characteristics of concrete, but they often 
present a limited capacity to reproduce the 
overall material behavior. A promising 
approach to overcome this limit seems to be 
the Microplane Model whose basic idea is 
related to the observation that the main 
mechanical phenomena of concrete take place 
on planes whose orientation depends on load 
and material conditions. 
This paper deals with a detailed description of 
the implementation process followed to insert 
the elastic part of the Microplane Model within 
COMSOL. The examples used to validate this 
part are presented as well. The implementation 
of the non linear behavior of the microplane 
model is still in progress; therefore it is not 
addressed in this paper. 
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1. Introduction 
 

The theory the microplane model is based 
on is not of recent formulation as it came out 
from the pioneering idea of Taylor (1938), [1]. 
He proposed characterizing the constitutive 
behavior of polycrystalline metals by means of 
relations between the stress-strain vectors 
acting on planes of any orientation within the 
material and determining the macroscopic 
strain and stress tensors as a resultant of all 
these vectors, assuming static or kinematic 
constraint. The lack of computers first and 
their limited computational capacity afterwards 
prevented the practical application of this 
method in engineering problems up to few 
decades ago. In the meanwhile the microplane 
theory underwent some developments and it 
was adapted to deal with brittle materials such 
as concrete, [2]÷[8]. 

In the next paragraphs the formulation of 
the microplane constitutive model for concrete 
will be briefly presented, followed by a 
detailed descriptions of its implementation 
within COMSOL. A simple example on a cube 
and a schematized concrete gravity dam will 
be used to show how the model works in 
COMSOL. 
 
2. The microplane formulation for 
concrete 
 

The philosophy governing the microplane 
model is essentially based on the experimental 
observation that the major mechanical 
phenomena characterizing concrete (creep, 
friction, shear and tensile fractures) are always 
referable to a plane whose orientation depends 
on material microstructure as well as loading 
and constraint conditions. Thus the microplane 
constitutive law is formulated by means of a 
relation between the strain and stress vectors 
acting on a plane of arbitrary orientation 
within the material. The orientation of this 
plane, called microplane, is defined by its unit 
normal n of components ni, where i refers to 
Cartesian components. 

The microplane model follows a different 
logical scheme as regards classical approaches, 
anyway the starting point and the final one are 
obviously the same being respectively the 
strain and stress tensor, as shown in Figure 1. 
As a convention, in this paper the subscript N 
stands for the component of the strain vectors 
that are normal to microplanes, while M and L 
are referred to the tangential components. 

 

 
Figure 1. The logical scheme of microplane model 
(in blu) compared with that of classical approaches 
(in orange). 
 

Considering the scheme in Figure 1, three 
steps characterize the elastic behavior of the 
microplane model: 



1. the strain vector on the microplane is 
the projection of the macroscopic strain 
tensor (kinematic constraint); 

2. the stress vector is computed by means 
of the microplane constitutive law; 

3. the macroscopic stress tensor is 
computed applying the principle of 
virtual work. 

 
In the following paragraphs each step will 

be briefly described. 
The non linear behavior of the microplane 

model is not addressed in this paper because its 
implementation within COMSOL is still in 
progress. 
 
2.1 First Step: application of the kinematic 
constraint  
 

At first the number and orientation of all 
microplanes related to a generic material point 
should be defined. In literature different 
solutions are provided and their accuracy is 
specified as well, [3]. 

Considering each material point, the 
kinematic constraint is applied projecting the 
strain tensor εij on each microplane (Figure 2): 

 

jij
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being nj the unit vector components normal to 
the microplane k, [6]. 
 

 
Figure 2. Components of the strain vector εn 
referred to a generic microplane: εN, εL, εM. 
 

The component of the strain vector normal 
to the microplane is given by: 
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being the tensor Nij = ni nj. 

In order to compute the shear strain 
components, two orthogonal directions should 
be determined by means of two orthogonal 
unit vectors m and l, both lying on the same 
microplane: 

 
( ) ijijjijiM Mnm εεε ==  (3) 

( ) ijijjijiL Lnl εεε ==  (4) 
 
where Mij and Lij are symmetric tensors, 
defined as follows: 
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2.2 Second Step: the microplane constitutive 
law 
 

The constitutive law that allows computing 
the microplane stresses from the microplane 
strains usually splits the normal strain vectors 
into their volumetric and deviatoric parts. 

 

DVN σσσ += ; DVN εεε +=  (7a,b) 
 
where the volumetric stress σV as well as the 
corresponding volumetric strain εV are equal 
for all microplanes: 
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On the microplane level, the elastic 

response of the constitutive law is defined by 
means of the elastic incremental relations in 
the rate form: 

 

VVV E εσ �� = ; DDD E εσ �� =  (9a,b) 

MMM E εσ �� = ; LLL E εσ �� =  (10a,b) 
 
where EV, ED and ET are the microplane elastic 
moduli: 
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DT EE µ=  (12) 
 
being E the Young modulus, ν the Poisson 
ratio and µ a parameter of the method, 
generally assumed unitary. 
 
2.3 Third Step: application of the principle 
of virtual work  
 

The stress components on each microplane 
are not in general equal to the projections of 



macroscopic stress tensor σij if the kinematic 
constraint has been applied to the strain tensors 
εij. Because of that, the static equilibrium is 
imposed by means of the principle of virtual 
work written with reference to the surface Ω of 
a unit hemisphere whose center is supposed to 
be the material point. Considering that the 
variation equation of this principle must hold 
for any variation δεij, the following basic 
equilibrium equation is attained: 
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The integral over the surface of the unit 

hemisphere represents the integration over an 
infinite number of microplanes but its solution 
is not a trivial matter. For this reason, Gaussian 
quadrature formulas of various degrees of 
approximation are adopted: 
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This approximation represents a weighted 

summation over all Nmp microplanes in which 
normalized weights wk are adopted.  

In literature, it was assessed that a good 
arrangement between an accurate solution of 
the integration formula and the computational 
cost of the overall method in terms of time and 
numerical resources is assured when 28 
microplanes are defined for each material 
point, [3]. 
 
3. Implementation of the microplane 
model in COMSOL 
 

In most software the implementation of the 
microplane model implies the development of 
complex external user subroutines. The setting 
of the interactions occurring between software 
and subroutines is very often a challenging 
task. 

On the contrary, COMSOL does not 
necessarily require developing subroutines 
since it provides a user-friendly platform. For 
this reason, together with its capacity to deal 
with multi-physic problems, COMSOL was 
deemed a good platform to implement the 
microplane model. 

The implementation process was arranged 
in several phases, defining respectively: 
• the global parameters and variables that 

are common to all microplanes; 

• the strain and stress vectors according to 
the theoretic assumptions; 

• the constitutive law governing mechanical 
quantities at the microplane level. 

 
In order to speed up the implementation 

process, the variables as well as the vector and 
tensor quantities were defined within the 
environment of MATLAB code which is well 
interfaced with COMSOL. The comsol server 
matlab command was used. 
 
3.1 Global parameters and variables 
 

Many parameters and variables of the 
method are common to all microplanes; thus, it 
is useful to compute them all just once before 
starting any analyses. 

Making reference to the Model Builder 
window of COMSOL, all these quantities were 
placed within the Global Definitions node 
(Figure 3); in particular, they are: 
• the material and model parameters (i.e. 

Young modulus, Poisson’s ratio, concrete 
density and the microplane elastic moduli 
as defined in §2.2); 

• the direction cosines n, m and l of all 
microplanes (§2.1); 

• the weights wk to be applied to the 28 
microplanes in the adopted Gaussian 
integration formula (§2.3); 

• the tensor Nij, Mij and Lij used to project 
the strain tensor εij on the 28 microplanes 
of each material point (§2.1); 

• the three unit versors of Cartesian axes. 
 

 
Figure 3. Example relevant to the definition of 
some variables within the Global Definition node. 
 



The direction cosines n, m and l as well as 
the weights wk related to the 28 microplanes 
are available in literature [3]. 

In order to assign meaningful names to all 
these variables, common conventions were 
considered: the first letters of each name 
identify the microplane the variable is referred 
to (mp00, with 00 = 1÷28), while the second 
part of the name specifies the type of variable 
as well as the Cartesian axes it is correlated to. 
Therefore, the generic name of each variable 
was defined as follows: 
• mp00_nj, mp00_mj, mp00_lj stand for 

the direction cosines n, m and l related to 
the Cartesian axis j; 

• mp00_w represents the weights of the 
Gaussian formula; 

• mp00_Nij, mp00_ Mij, mp00_ Lij denote 
the tensor Nij, Mij and Lij. 

 
3.2 Strain and stress vectors 
 

Either the strain or stress vectors were 
specified at a local level in the Definitions 
node that is part of the Model node in which 
the structure to be studied has to be fully 
described and characterized. 

Considering that the constitutive law is 
expressed in the rate form, the time derivatives 
of the strain vectors were defined. In the eNML 
node the expression of the three components of 
the strain vector of each microplane were 
included (Figure 4). The name of every strain 
component was linked to the corresponding 
microplane as follows: eN00, eM00, eL00. 
The normal component was also split in its 
volumetric and deviatoric part: eV00, eD00. 
 

 
Figure 4. Definition of the time derivates of the 
three components of the strain vectors. 
 

The outputs given by the microplane 
constitutive law were expressed in terms of 
volumetric, deviatoric and shear stress 
components. Starting from these vector 
components the corresponding stress tensor 
was attained applying the principle of virtual 
work. Considering equation (14), within the 
sigmaij node the summation of the stress 
tensor components was computed for each 
microplane (Figure 5). In this case a different 
notation was assumed to identify these 
quantities: the first letters of the name indicate 
the stress tensor component while the second 
part the microplane it is referred to: sij_00. 
 

 
Figure 5. Definition of stress tensor components of 
each microplane. 
 

Within the SommaMP node the normalized 
weights were applied, while in the SommaTOT 
node the resulting stress tensor components for 
material points were defined (Figure 6).  
 

 
Figure 6. Definition of the resulting stress tensor 
components for a generic material point. 
 



Since a symmetric tensor is considered, the 
six components were respectively named: 
• Som1 = σxx; 
• Som2 = σyy; 
• Som3 = σzz; 
• Som4 = σxy; 
• Som5 = σxz; 
• Som6 = σyz; 
 
3.3 Constitutive law at the microplane level 
 

The constitutive law was implemented in 
COMSOL by means of its PDE modules. More 
than one PDE module was used just to manage 
in a better way all equations that have to be 
defined for each material point, that is a total 
of 112 equations resulting from the four vector 
components per 28 microplanes. 

In the Setting window of each PDE module 
the General Form PDE interface allows 
specifying the coefficients for a general PDE 
form. In this case, the PDE coefficients were 
set up according to the microplane constitutive 
law expressed in terms of elastic relations in 
the rate form as specified in equations (9a,b) 
and (10a,b). The default equation provided by 
COMSOL is as follows: 

 

f�
t
u

ad2t

u2
ae =⋅∇+

∂
∂+

∂

∂
 (15) 

 
In the present work, the stress vector 

components were assumed as the dependent 
variables u. In analogy to the corresponding 
strain vector components they were named: 
sV00, sD00, sM00 and sL00 (Figure 8). 
 

 
Figure 8. Definition of dependent variables in the 
Setting window of the PDE module. 

 
The second time derivatives as well as the 

flux vector Γ are not present in the microplane 
constitutive law; therefore, all terms of matrix 
ea and of flux vector Γ were assumed equal to 
zero. Considering that in the elastic relations of 
each microplane the dependent variables are 

involved one at a time, matrix da is a unit 
matrix, while the source terms f are equal to 
the right hand terms of equations (9a,b) and 
(10a,b) as shown in Figure 9. 
 

 
Figure 9. Definition of the source terms of the PDE 
form in the Setting window of the PDE module. 
 

The Solid Mechanincs module was added 
as well because the microplane model is used 
to study the mechanical behavior of concrete 
structures. In this case, the dependent variables 
are the displacement field: u, v and w. 

In order to couple the Solid Mechanics 
module with the PDE modules, the values 
relevant to the stress tensor components as 
computed in the PDE modules were assigned 
to the corresponding components of the 
mechanical stress tensor (Figure 10). 
 

 
Figure 10. Coupling between the Solid Mechanics 
module and the PDE modules. 
 
4. Simple applications 
 

So far only the elastic behavior of the 
microplane model has been implemented and 
verified, while the implementation of the non 
linear behavior is still in progress. 

The microplane model was applied on a 
concrete cube with one meter long edge, 
loaded on one face by means of a 1000 N/m2 
constant pressure and constrained on the 
opposite side. The resulting displacement 
along the loaded direction is 5.E-08 m (Figure 



11) while the corresponding stress component 
is equal to 1000 N/m2 (Figure 12). Both values 
can be manually attained taking into account a 
Young modulus of 2.E+10 N/m2. 
 

 
Figure 11. Displacement field along the loaded 
direction. 
 

 
Figure 12. Contour of the stress tensor component 
along the y direction (i.e. Som2). 
 

This simple example was useful to evaluate 
the correctness of the implementation process 
in COMSOL. Either the Fully Coupled time-
dependent solver or the Segregated one gives 
the exact solution. 

An engineering application was studied as 
well taking into consideration a schematized 
geometry of a concrete gravity dam. The mesh 
used to study this case is reported in Figure 13. 
 

 
Figure 13. Mesh of a concrete gravity dam. 
 

The field of vertical stresses is qualitatively 
in good agreement with that computed using a 
simple linear elastic model, anyway a slight 
difference could be observed in the extreme 
values of the contour (Figure 14 and 15). ). 
This difference is still under investigation in 
order to understand if it is due to the 
application of the kinematic constraint as well 
as the principle of virtual work. The tolerance 
used to solve the problem is also under control. 
 

 
Figure 14. Contour of the vertical stress tensor 
component (i,e, Som3) in case a microplane model 
is used. 
 

 
Figure 15. Contour of the vertical stress tensor 
component in case a linear elastic model is used. 
 
5. Conclusions 
 

The ability to properly simulate the overall 
behavior of concrete in order to assess the 
safety of large civil structures is actually 
important. In this context, the microplane 
model was proved to be a good solution to 
represent the complex behavior of concrete; 
moreover, the advancements in computer 
performances have allowed the application to 
study also engineering problems. 

The elastic behavior of the microplane 
model was implemented within COMSOL and 
verified by means of simple examples. The 
implementation process was described in 
details making reference to the theory the 
method is based on. 



A good setting of this elastic phase was 
crucial to work in the non linear behavior. 
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