Presented at the 2011 COMSOL Conference in Boston

A 2D Axisymmetric Electrodeposition Model

Roger W. Pryor, Ph.D. VP Research, Pryor Knowledge Systems

• Widely Employed Technology

- Widely Employed Technology
- Large Literature {1}

- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology

- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology
- Decorative Coatings

- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology
- Decorative Coatings
- Abrasion Resistance

- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology
- Decorative Coatings
- Abrasion Resistance
- Corrosion Resistance

- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology
- Decorative Coatings
- Abrasion Resistance
- Corrosion Resistance
- Electrical Circuit Formation

- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology
- Decorative Coatings
- Abrasion Resistance
- Corrosion Resistance
- Electrical Circuit Formation
- Encapsulation

- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology
- Decorative Coatings
- Abrasion Resistance
- Corrosion Resistance
- Electrical Circuit Formation
- Encapsulation
- Optical Coatings

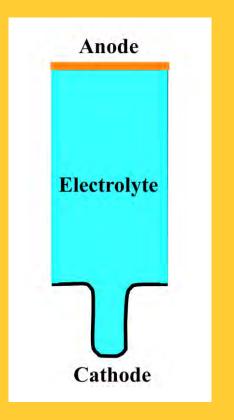
- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology
- Decorative Coatings
- Abrasion Resistance
- Corrosion Resistance
- Electrical Circuit Formation
- Encapsulation
- Optical Coatings
- Cloaking Circuits

- Widely Employed Technology
- Large Literature {1}
- Critical Path Technology
- Decorative Coatings
- Abrasion Resistance
- Corrosion Resistance
- Electrical Circuit Formation
- Encapsulation
- Optical Coatings
- Cloaking Circuits
- Nanotechnology
- etc.

• High Aspect-Ratio Well Plating

- High Aspect-Ratio Well Plating
- Transient Response Coating Thickness

- High Aspect-Ratio Well Plating
- Transient Response Coating Thickness
- Ionic Mass Transport through Fluid Medium


- High Aspect-Ratio Well Plating
- Transient Response Coating Thickness
- Ionic Mass Transport through Fluid Medium
- pH 4 Copper Sulfate Medium

- High Aspect-Ratio Well Plating
- Transient Response Coating Thickness
- Ionic Mass Transport through Fluid Medium
- pH 4 Copper Sulfate Medium
- Nernst-Planck Equation {2} (chnp) Solution

- High Aspect-Ratio Well Plating
- Transient Response Coating Thickness
- Ionic Mass Transport through Fluid Medium
- pH 4 Copper Sulfate Medium
- Nernst-Planck Equation {2} (chnp) Solution
- Moving Mesh (ale) Solution

- High Aspect-Ratio Well Plating
- Transient Response Coating Thickness
- Ionic Mass Transport through Fluid Medium
- pH 4 Copper Sulfate Medium
- Nernst-Planck Equation {2} (chnp) Solution
- Moving Mesh (ale) Solution
- First Approximation Solution

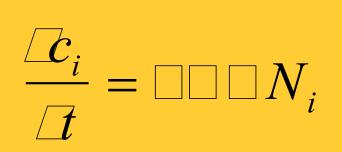
- High Aspect-Ratio Well Plating
- Transient Response Coating Thickness
- Ionic Mass Transport through Fluid Medium
- pH 4 Copper Sulfate Medium
- Nernst-Planck Equation {2} (chnp) Solution
- Moving Mesh (ale) Solution
- First Approximation Solution
- Based on Fick's Law {3} plus Electrostatic Forces

Governing Processes: Nernst-Planck Equation

$$N_i = \Box D_i \Box c_i \Box z_i u_i F c_i \Box V$$

Where: $N_i = mass transport vector [mol/(m^2*s)]$ $D_i = Diffusivity of the ith species in the electrolyte [m^2/s]$ $c_i = Concentration of the ith species in the electrolyte [mol/m^3]$ $z_i = Charge of the ith species in the electrolyte [1] (unitless)$ $u_i = Mobility of the ith species in the electrolyte [(mol*m^2)/(J*s)]$ F = Faraday's constant [A*s/mol] V = Potential in the fluid [V]

This 2D Axisymmetric Electrodeposition Model: Governing Processes: Nernst-Planck Equation


The mobility u_i of the ith species can be expressed as:

$$u_i = \frac{D_i}{RT}$$

Where: D_i = Diffusivity of the ith species in the electrolyte [m²/s] R = Universal gas constant 8.31447[J/mol*K] T = Temperature [K]

This 2D Axisymmetric Electrodeposition Model: Governing Processes: Nernst-Planck Equation

The material balances for each species are expressed as:

Where: $c_i = Concentration of the ith species in the electrolyte [mol/m^3]$ $<math>N_i = mass transport vector [mol/(m^2*s)]$ t = time [t] This 2D Axisymmetric Electrodeposition Model: Governing Processes: Nernst-Planck Equation

The electroneutrality condition is given as follows:

$$\Box_i Z_i C_i = 0$$

Where: z_i = Charge of the ith species in the electrolyte [1] (unitless) c_i = Concentration of the ith species in the electrolyte [mol/m^3]

Governing Processes: Butler-Volmer Equation {4}

The boundary conditions at the anode and the cathode are determined by the assumed electrochemical reaction and the Butler-Volmer equation.

Governing Processes: Butler-Volmer Equation {4}

The boundary conditions at the anode and the cathode are determined by the assumed electrochemical reaction and the Butler-Volmer equation.

The assumed electrochemical reactions by which copper deposits on the cathode are as follows. (There are actually two reactions that occur.)

They are: $Cu^{2+}+e^{-} = Cu^{+}$ and $Cu^{+}+e^{-} = Cu$.

Governing Processes: Butler-Volmer Equation {4}

The boundary conditions at the anode and the cathode are determined by the assumed electrochemical reaction and the Butler-Volmer equation.

The assumed electrochemical reactions by which copper deposits on the cathode are as follows. (There are actually two reactions that occur.)

They are: $Cu^{2+}+e^{-} = Cu^{+}$ and $Cu^{+}+e^{-} = Cu$.

(Typically, since not all things are equal and it is known that the Rate Determining Step (RDS) (slowest) is the $Cu^{2+}+e^{-} = Cu^{+}$, by about a factor of 1000 {5}.)

It is also herein assumed that the $Cu^{2+}+e^{-} = Cu^{+}$ step is in equilibrium.

Governing Processes: Butler-Volmer Equation {4} That being the case, then the cathode mass transport is:

$$N_{Cu^{2}} \ln = \frac{i_0}{2F} \exp \begin{bmatrix} 1.5F \square_{cat} \square \\ RT \end{bmatrix} = \frac{c_{Cu^{2}}}{c_{Cu^{2},ref}} \exp \begin{bmatrix} 1.05F \square_{cat} \\ RT \end{bmatrix}$$

Where: $N_i = mass transport vector [mol/(m^2*s)]$

n = normal vector

 i_0 = Exchange current density [A/m²]

R = Universal gas constant [J/(mol*K)]

 c_{Cu}^{2+} = Concentration of the Cu²⁺ species in the electrolyte [mol/m³]

 c_{Cu}^{2+} , ref = Reference concentration of the Cu²⁺ species in the electrolyte [mol/m³]

 \Box_{cat} = Cathode overpotential [V]

F = Faraday's constant [A*s/mol]

T = Temperature [K]

Governing Processes: Butler-Volmer Equation {4} It then follows that, the anode mass transport is:

$$N_{Cu^{2}} \square n = \frac{i_0}{2F} \square \exp \square \frac{1.5F\square_{an}}{RT} \square \frac{c_{Cu^{2}}}{c_{Cu^{2},ref}} \exp \square \frac{0.5F\square_{an}}{RT} \square \frac{c_{Cu^{2}}}{RT} = \frac{1.5F\square_{an}}{RT} \square \frac{c_{Cu^{2}}}{RT} = \frac{1.5F\square_{an}}{RT} \square \frac{1.5F\square_{an}}{RT$$

Where: $N_i = mass transport vector [mol/(m^2*s)]$

n = normal vector

 i_0 = Exchange current density [A/m²]

R = Universal gas constant [J/(mol*K)]

 c_{Cu}^{2+} = Concentration of the Cu²⁺ species in the electrolyte [mol/m³]

 c_{Cu}^{2+} , ref = Reference concentration of the Cu²⁺ species in the electrolyte [mol/m^3]

 \Box_{an} = Anode overpotential [V]

F = Faraday's constant [A*s/mol]

T = Temperature [K]

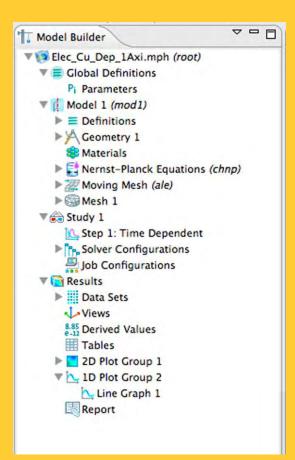
This 2D Axisymmetric Electrodeposition Model: Governing Processes: Butler-Volmer Equation {4}

For the insulating boundaries, where the mass transport is zero:

$$N_{Cu^{2n}} n = 0$$

Where: N_{Cu}^{2+} = mass transport vector [mol/(m^2*s)] **n** = normal vector

This 2D Axisymmetric Electrodeposition Model: Governing Processes: Butler-Volmer Equation {4}

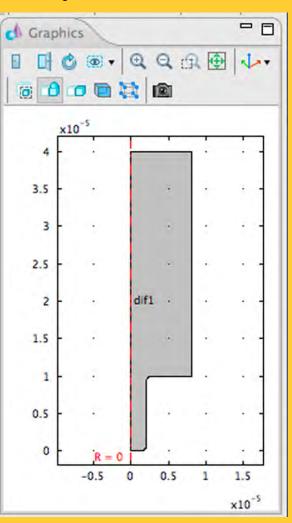

For sulfate ions, the insulating condition applies everywhere, thus:

$$N_{SO_4^{2\square}} \square n = 0$$

Where: N_{SO4}^{2+} = Mass Transport Vector [mol/(m^2*s)] **n** = normal vector

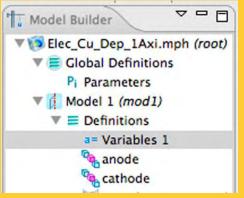
Building the 2D Axisymmetric Electrodeposition Model

Model Builder Chart


Building the 2D Axisymmetric Electrodeposition Model

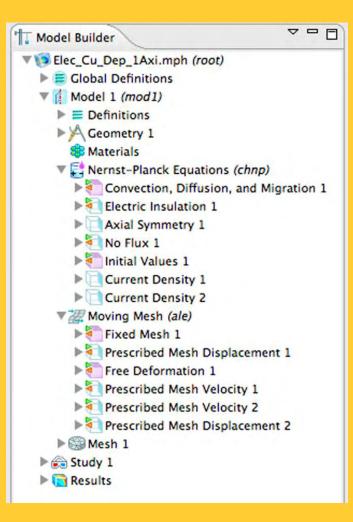
Name	Expression	Description
Cinit	500 [mol/(m^3)]	Initial concentration
TO	298[K]	System temperature
iO	150[A/m^2]	Exchange current density
phi_eq	0[V]	Relative equilibrium potential
alpha	0.75[1]	Symmetry factor
phi_s_anode	0.0859[V]	Anode potential
phi_s_cathode	-0.0859[V]	Cathode potential
z_net	2[1]	Net species charge
z_c1	z_net[1]	Charge, species c1
z_c2	-z_net[1]	Charge, species c2
um_c1	D_c1/R_const/T0	Mobility, species c1
um_c2	um_c1	Mobility, species c2
MCu	63.546e-3[kg/mol]	Cu molar mass
rhoCu	7.7264e3[kg/m^3]	Cu density
D_c1	2e-9[m^2/s]	Diffusivity
alpha1	0.5[1]	Symmetry factor
alpha2	1.5[1]	Diffusivity
D_c2	D_c1	Symmetry factor

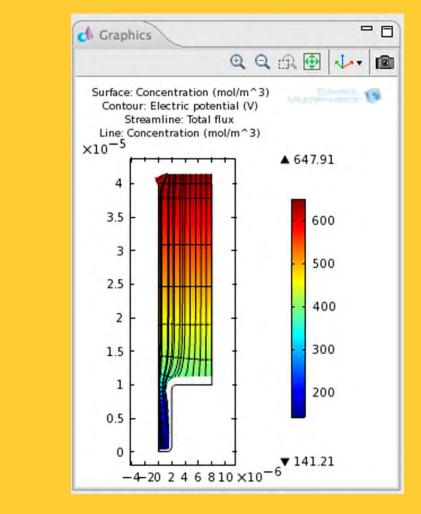
Global Parameters


Building the 2D Axisymmetric Electrodeposition Model

Model Geometry

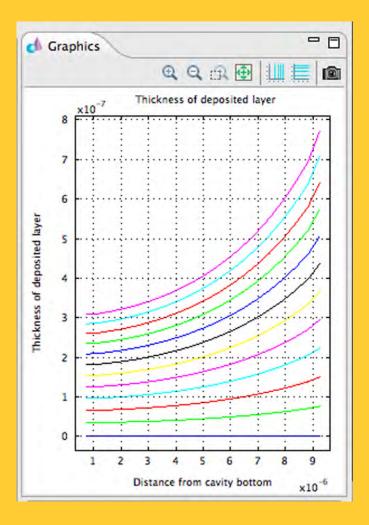
Building the 2D Axisymmetric Electrodeposition Model


Local		
Variables		


Name	Expression	Description
i anode	i0*(exp(alpha*z_net*F_const/R_const/T0*(phi_s_anode-V-	Anode current density
_	phi_eq))-c1/Cinit*exp(- alpha1*z net*F const/R const/T0*(phi s anode-V-phi eq)))	, i i i i i i i i i i i i i i i i i i i
i_cathode	i0*(exp(alpha2*z_net*F_const/R_const/T0*(phi_s_cathode-V- phi_eq))-c1/Cinit*exp(-	Cathode current density
	alpha1*z_net*F_const/R_const/T0*(phi_s_cathode-V-phi_eq)))	
growth	i_cathode*MCu/rhoCu/z_net/F_const	Deposition rate, cathode
n_growth	i_anode*MCu/rhoCu/z_net/F_const	Deposition rate, anode
displ_r	abs(r-R)	Absolute displacement in r direction

This 2D Axisymmetric Electrodeposition Model: Building the 2D Axisymmetric Electrodeposition Model

Domain and Boundary Specifications


Results

Converged Model

Results

Electrodeposition Thickness

This 2D Axisymmetric Electrodeposition Model: Conclusions

COMSOL Multiphysics 4.x works well for the modeling of electrodeposition problems.

References

1. N. Kanani, Ed., *Electroplating and Electroless Plating of Copper & its Alloys*, ASM International, Materials Park, Ohio, ISBN: 0-904477-26-6, (2003)

- 2. http://en.wikipedia.org/wiki/Nernst-Planck_equation
- 3. http://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion

4. http://en.wikipedia.org/wiki/Butler-Volmer_equ

5. Z. Chen and S. Liu, "Simulation of Copper Electroplating Fill Process of Through Silicon Via", 11th International conference on electronic Packaging Technology & High Density Packaging, 2010, pp. 433-437

Thank You!