

Duct Silencer Modeling With COMSOL Multiphysics® COMSOL Conference Online Event

October 14 – 15, 2020

COMSOL Certified Consultant

Dr.ir. Anne de Jong

acoustics | software | consultancy | engineering | education

Introduction

- Duct acoustic silencing
 - Applications:
 - Exhaust gas streams
 - Heating, Ventilation, Air Conditioning

Duct silencer internals

The approach of ASCEE

- We design <u>custom</u> silencers
- Benefits:
 - Optimized result by tuning duct silencer to source
 - Free flow-through, no flow head losses (pressure drop)
 - Smallest silencer for a required noise reduction

Limitations of transfer matrix method

- Local near fields of resonators interact with each other (evanescent wave coupling)
- Only valid for plane waves (below cut-on frequency only):

- Resonator hole dimension fine-tuning
 - First step: hole models (often in axisymmetric case)
 - Second step: actual holes

- Inte	erior Perforated Plate	
Mod	lel type:	
Thir	n plate	~
Hole	e diameter:	
$d_{\rm h}$	1[mm]	r
Plate	e thickness:	
tp	1.5[mm]	1
Агеа	porosity:	
σ	0.1	
End	correction:	
Buil	lt in	~
Hole	-hole interaction:	
Fok	function	~
Discl	harge coefficient (linear):	
$C_{\rm D}^{(\rm lin)}$	0 1	
🗆 In	clude nonlinear effects	
U 🗆	ser-defined contribution	

9/25/20

COMSOL Steps (1): Resonator fine-tuning

- Real-hole geometry (no perforate modeling)
 - Comsol parts library, parametrized resonator chamber

Herein Commetry Parts

- Round silencer parts {grp1}
- Helmholtz_chamber_round {part1}

9/25/20

Hentrance_exit_slice {part3}

•
Concentric MPP chamber {part4}

•
MPP Cavity Helmholtz slice {part5}

- These resonator chambers all come from the same library part
- Selections are used for more easy application of boundary conditions
- Axi-symmetric slice size is automatically computed

Computation of transmission loss

• Acoustics library: using ports

- Tune individual chambers first
 - Holes: reactance is already in Helmholtz equation. Viscous resistance term added to holes from global equations, using an interior impedance boundary condition

Port 1 {port1}

Assembling all together

- Note: transmission loss (TL) is a silencer property, while the final result the client is often interested in, is the insertion loss (IL).
 - TL: The ratio between the sound power of the incoming wave and the sound power of the transmitted wave without any reflections from the downstream end of the silencer.
 - IL: the difference in level prior to insertion of the silencer minus the level after inserting a silencer
- IL is hard to compute, as it depends on the exact installation, pipe lengths, exit radiation and source impedance.
 - This analysis is done by exporting the derived acoustic transfer matrix back into the transfer matrix 1D code.
- However, a high TL mostly results in high IL (there are exceptions)

Conclusions

- We built a streamlined silencer design methodology for duct acoustic problems, involving
 - Source spectra tuning
 - 1D Optimal (reactive / hybrid) silencer design, without fiber-containing materials)
 - Further tuning in COMSOL for final design

• We have become quite effective and successful with this technology and methodology

• I am looking forward to answering your boiling questions!

