Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

2010 - Parisx

Modelling of Selected Electromechanical Phenomena in the DC Machine

M. Antczak, P. Idziak, and W. Lyskawiski
Poznań University of Technology, Poland

The paper presents the results of the experiment consisting in determination of the influence of the magnetic field on deformations of the stator and the rotor of the DC motor. The numerical model of the motor for the frameless DC machine of the G series has been elaborated. Real ... Mehr lesen

COMSOL Implementation for Upscaling of Two-Phase Immiscible Flows in Communicating Layered Reservoirs

X. Zhang, A. Shapiro, and E.H. Stenby
Center for Energy Resources Engineering, Technical University of Denmark, Lyngby, Denmark

Waterflooding is widely used in secondary oil recovery. The physics is described by the model of two-phase flow in porous media. The aim of the present work is to implement this model in COMSOL Multiphysics and to simulate the process of waterflooding. It is analyzed in two dimensions. ... Mehr lesen

Powerful automation and optimization methods for Material- and Process analysis with COMSOL Multiphysics and Matlab

T. Frommelt
SGL Group, Technology & Innovation, Meitingen, Germany

Thomas Frommelt received his PhD in physics in 2007 from the University of Augsburg for experimental work and simulation analysis on acoustically driven microfluidic mixing. In 2008, he joined the SGL Group and introduced COMSOL Multiphysics as the tool for flexible equation based ... Mehr lesen

Design Of A Flat Membrane Module For Fouling And Permselectivity Studies

J.M. Gozalvez-Zafrilla, and A. Santafe-Moros
Universidad Politécnica de Valencia, Valencia, Spain

Flat membrane modules are widely used to study the membrane performance at the laboratory which is influenced by pressure and velocity. Most modules designed for laboratory studies have high pressure drop and abrupt changes of flow direction what yield to lack of uniform flow and ... Mehr lesen

Fibre-Optic Microsensor Based on Surface Plasmon Resonance in a Microfluidic Cell : An Experimental and Numerical Multiphysics Approach

G. Louarn, T. Makiabadi, V. Le Nader, and M. Kanso
Institut des Matériaux Jean-Rouxel (IMN), CNRS- Université de Nantes, France

In the last decade, the surface plasmon resonance (SPR) has become a very sensitive technique for real-time detection in many application areas. Considering the fiber optic concept and the important needs for analyzing biomolecular reactions through automated and miniaturized components, ... Mehr lesen

Laser Welding of a Titanium Feed Through

H. Viatge
SORIN Group, France

In all implantable medical devices, one main challenge is to assure no water penetrates in the electronic part of the system. To be able to transmit the electronic information from the inside of the device to the lead without any water infiltration, we used a complex part called feed ... Mehr lesen

Formation Of Porosities During Spot Laser Welding : Case Of Tantalum Joining

C. Touvrey
CEA Valduc, France

During the welding of tantalum with a ND: YAG pulsed laser, a deep and narrow cavity, called the keyhole, is formed. At the end of the process, surface tension forces provoke the collapse of the keyhole. For important interface deformations, gas bubbles can be trapped into the melting ... Mehr lesen

Microwave Heating at the Grain Level

S. Lefeuvre[1], and O. Gomonova[2]
[1]Eurl Creawave, Toulouse, France
[2]Siberian State Aerospace University, Krasnoyarsk, Russia

The microwave heating and processing of heterogeneous material is usually simulated using a set of coupled PDE equations in an homogeneous medium. Nowadays it is possible to describe more accurately the process with a suitable description of the heterogeneities that is at the grain ... Mehr lesen

Blistering of Industrial Floor on Concrete Substrate: the Role of the Air Overpressure

S.V. Aher[2], P. Devillers[1], G. Fau[3], B. Tranain[3], and C. Buisson[1]
[1]Centre des Matériaux de Grande Diffusion, Ecole des Mines d’Alès, Alès cedex, France
[2]Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
[3]Centre Scientifique et Technique du Bâtiment, France

Surface coating can fullfil their function satisfactorily over an extended period of time only if there is a good bond between the concrete substrate and the coating. The most numerous cases of blistering affect the airtight covers of the concrete subjected to negative pressures of ... Mehr lesen

On The Modelling Of Electrowetting Using COMSOL Multiphysics

J.F. Dannenberg, J. Brinkert, and E.A.D. Lamers
Reden b.v., Hengelo (ov.), The Netherlands

One of the upcoming technologies in displays is that of the electrowetting displays. A surface can be covered by a colored oil or transparent water using a voltage to increase or decrease the wettability of the surface. A simulation of the behavior of such a thin film of oil in water, ... Mehr lesen

Erste
Vorherige
1–10 of 185