Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Silk is one of the longest used and most recognizable textiles that we, as a society, use regularly. We see it as a luxury good, worn as an indicator of success and value. However, despite mankind having domesticated and farmed silkworms for millennia, we still know relatively little ... Mehr lesen
This project makes a first attempt at modelling fluid flow over shark skin on a microscopic level. The modeled fluid flow shows good agreement with theory. Further refinement of the model parameters holds promises of better understanding of this complex fluid flow phenomenon. The COMSOL ... Mehr lesen
As known, air quality in urban areas is dramatically affected in particular by the noteworthy presence of respirable suspended particulate matter (such as PM2.5), nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC), which are mainly due to traffic-induced emissions. On the ... Mehr lesen
Successive studies on graphene, reactive-edge graphene, and pore functionalized graphene were conducted throughout the use of the extended capabilities of COMSOL Multiphysics® modules, modeling and simulating the activation of functionalized building-blocks made of graphene and C- ... Mehr lesen
Usually, when calculating the blood flow in cerebral arteries and intracranial aneurysms, blood is modeled as a Newtonian fluid, neglecting its shear-thinning behavior. Since flow diverting devices slow down the blood flow in the aneurysm sack, the accuracy of this assumption had to be ... Mehr lesen
Giant vesicles (GVs) are artificial chemical systems largely used as cell models, since they are micrometer-sized closed compartments bounded by a semi-permeable membrane, which in turn is composed by self-assembling amphiphiles. By opportunely engineering the lipid membrane and by ... Mehr lesen
Silver nanoparticles are valuable in the field of plasmonics since silver has a higher field enhancement factor compared to other metals that possess plasmonic properties. The plasmonic properties of silver nanoparticles can be finely tuned to the incident light wavelength through their ... Mehr lesen
While many biological details in organogenesis have been uncovered, fundamental questions regarding the control of growth and shape during lung and kidney morphogenesis remain unsolved. Using mathematical models, we recently showed that only ligand-receptor based Turing models ... Mehr lesen
The numerical results of the unconfined compression test on a sample of Articular Cartilage (AC) are discussed. AC is modelled as a load-bearing, deformable, fiber-reinforced material filled with an interstitial fluid and comprising statistically oriented collagen fibers, chondrocytes, ... Mehr lesen
This work describes the design and optimization of three prototypes of microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. The analysis ... Mehr lesen