Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

Multiphysicsx

Fluid-Structure Interaction Modeling for an Optimized Design of a Piezoelectric Energy Harvesting MEMS Generator

I. Kuehne[1], A. van der Linden[2], J. Seidel[1], M. Schreiter[1], L. Fromme[2], and A. Frey[1]
[1]Siemens AG, Corporate Research & Technologies, Munich, Germany
[2]Comsol Multiphysics GmbH, Göttingen, Germany

This paper reports the design of a piezoelectric energy harvesting micro generator for an energy autonomous tire pressure monitoring wireless sensor node. For our design we use a piezoelectric MEMS generator approach without additional mass. The intrinsic mass of the cantilever is in the ... Mehr lesen

Modeling of Coupled Fluid Flow and Shear-induced Solidification Kinetics in Rheocasting of Aluminium Alloys

G. Maizza, and G. Lorenzatto
Politecnico di Torino
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica
Torino, Italy

The model proposed by Schneider et al., for polymers is herein adapted in order to assess its suitability in elucidating the thixotropic behavior of aluminum alloys. The COMSOL Multiphysics program is employed to solve the inherent coupled mathematical problem, consisting in the ... Mehr lesen

Direct Electrohydrodynamic Simulation of Particle Mobility

A. Verschueren, and P. K. Tomaszewski
Philips Research Laboratories Eindhoven
Micro Systems & Devices group
High Tech Campus 4
Eindhoven, The Netherlands

All particles in suspension have a zeta potential, or surface potential. Its measurement is extremely important for predicting the formulation stability across a wide range of industries including food, ink and pharmaceuticals, water purification and medical devices. Zeta potential is ... Mehr lesen

Formation of Porosities During Spot Laser Welding of Tantalum

C. Touvrey[1], and P. Namy[2]
[1]CEA Valduc, France
[2]SIMTEC, France

The aim of the study is to predict the formation of porosities in the case of spot laser welding of tantalum. During the interaction, a deep and narrow cavity, called the keyhole, is generated. At the end of the interaction, surface tension provokes the collapse of the keyhole. Gas ... Mehr lesen

Numerical Modeling of Cold Crucible Induction Melting

I. Quintana[1], Z. Azpilgain[1], D. Pardo[2], and I. Hurtado[1]
[1]Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa, Spain
[2]Department of Applied Mathematics, Statistics, and Operational Research, University of the Basque Country (UPV/EHU), Leioa, Spain, and IKERBASQUE (Basque Foundation for Sciences), Bilbao, Spain

This paper describes a numerical solution method for the simulation of a cold crucible induction melting (CCIM) process involving the coupling of electromagnetic, temperature and turbulent velocity fields. During the CCIM process, the metal charge is contained on a water cooled ... Mehr lesen

High Frequency Magnetohydrodynamic Calculations in COMSOL

N. Kleinknecht, and S. A. Halvorsen
Teknova AS
Kristiansand, Norway

In many metallurgical processes metals are (heated and) stirred by an oscillating external magnetic field. The magnetic field induces electric currents in the metal and the currents interact with the magnetic field to create a force, the Lorentz force. For high frequencies induction only ... Mehr lesen

Three Dimensional Numerical Study of the Interaction of Turbulent Liquid Metal Flow with an External Magnetic Field

G. Pulugundla[1], M. Zec[2], and A. Alferenok[3]
[1]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[2]Department of Advanced Electromagnetics, Ilmenau University of Technology, Ilmenau, Germany
[3]Electrothermal Energy Conversion Group, Ilmenau University of Technology, Ilmenau, Germany

Lorentz Force Velocimetry (LFV) is a non-contact measurement technique used to determine flow rates in electrically conducting fluids by exposing the flow to an external magnetic field and measuring the Lorentz force acting on the magnet system. Typically, for LFV applications real and ... Mehr lesen

Design and Development, via Prototype Testing and Multiphysics Modelling, of a Thermoelectric Generator (TEG) for Integration in Autonomous Gas Heaters

M. P. Codecasa[1], C. Fanciulli[1], R. Gaddi[2], F. Gomez Paz[3], and F. Passaretti[1]
[1]National Research Council of Italy - IENI Institute, Lecco, Italy
[2]Italkero S.r.l., Modena, Italy
[3]Studio di design Francisco Gomez Paz, Milano, Italy

An autonomous gas-heater for outdoor environments was selected as a test-case for cogeneration in gas-heaters and stoves, permitting installation and operation without need of an electrical network connection. A thermoelectric generator (TEG) was designed, converting part of produced ... Mehr lesen

Modeling of Chemo-Mechanical Coupled Behavior of Cement Based Material

D. Hu[1], F. Zhang[2], H. Zhou[3], and J. Shao[1]
[1]LML, UMR8107, CNRS, University of Lille I, Lille, France
[2]School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, China
[3]State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

A lixiviation-mechanical coupled model is developed for fiber reinforced concrete within this framework; both the influence of chemical degradation on short and long term mechanical behavior and the influence of mechanical loading on the diffusion coefficient can be considered. The ... Mehr lesen

Design Optimization of an Electronic Component with an Evolutionary Algorithm Using a MATLAB-COMSOL Based Model

E. Pelster, and D. Wenger
Wenger Engineering GmbH
Ulm, Deutschland

Electric construction components exposed to alternating high voltage have to withstand a significant amount of thermal loads and, resulting from the changes in Temperature , structural stresses. In order to achieve minimization of these loads, optimizing the geometry can be a helpful ... Mehr lesen