Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
To increase the power transfer capacity of existing lines, a transmission system operator in Germany plans to replace an existing 380-kV three-phase AC system into a bipolar HVDC system on the same tower that is called a 'hybrid line'. Due to the proximity of AC transmission systems and ... Mehr lesen
High intensity discharge lamps can experience flickering and even destruction, when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp’s are tube. Here, a finite element approach for the calculation ... Mehr lesen
In this paper modeling and simulation results of a thermal bimorph is capable of producing increased displacement for increasing temperatures are presented. Thermal bimorphs are popular actuation technology in MEMS (Micro-Electro-Mechanical Systems). Bimorph actuators consist of two ... Mehr lesen
An interaction of aluminum aircraft skins with a laboratory-simulated, low-level, long-duration, continuing current representative of a natural lightning flash was modeled with COMSOL Multiphysics. For the analysis of the lightning direct effects on aircraft, the external environment is ... Mehr lesen
Stationary flow configurations in curved pipes constitute an important subject from both the theoretical and the practical point of view. A typical application concerns the calculation of secondary flow effects on the thermal efficiency of heat exchangers. Motivated by a similar problem, ... Mehr lesen
Thomas Dreeben received his B.A. in Philosophy and Mathematics in 1985, and his Ph.D. in Mechanical Engineering in 1997, both from Cornell University. He has worked in automotive fuel systems at Ford Motor Company, and in turbulence at Sandia National Laboratories. He currently works in ... Mehr lesen
In this work the coupled electrochemical-thermal model for a lithium-ion battery (LIB) based on porous electrode theory has been extended with contributions coming from exothermic side reactions based on an Arrhenius law to model abuse mechanisms, which could lead to a thermal runaway. ... Mehr lesen
A simulation was performed to investigate the flow behaviors of drug delivery nanoparticles in a tumor-on-a-chip microfluidic device, which mimics a tumor cell having endothelial cells with micro-sized gaps. The Navier-Stokes equation and the convection-diffusion equation were used to ... Mehr lesen
The Finite Element Method (FEM) has become an established numerical tool used for different academic and industrial purposes. It allows the prediction of weld pool geometry, thermal cycle, final distortion and residual stress field during and after fusion welding. The capability of the ... Mehr lesen
This paper analyzes the magnetic behavior of electroplated wires. For this purpose the resistance and inductance of single turn loops and coils have been simulated and measured. The measurement is delicate due to the influence of a stray capacitance. We show that the quality factor of ... Mehr lesen