Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Transmission-line transducers are used for the measurement of absorption and reflection of different materials, such as: liquids, granular medium, and ground. A simplified methodology for calculation of scattering parameters of such transducers is presented. The transducer cell is ... Mehr lesen
The technology involved in high performance ultrasound imaging probes needs a reliable model to help in new projects development and performance simulations. To achieve a useful model, it is necessary to use correct values for all material parameters involved in the electro-acoustical ... Mehr lesen
This work describes the design methodology and development of piezoelectric transducers for applications in fluids with COMSOL_Multiphysics. In these linear models for the acoustic-structure interaction approximate numerical solutions have been obtained. In order to perform the ... Mehr lesen
This paper describes the COMSOL Multiphysics® simulation and the test of a low-frequency (500Hz) sound source for long-range acoustic communications. This design uses innovative carbon-fiber composite materials.To meet the demand for the frequency range the doubly resonant organ pipe ... Mehr lesen
A COMSOL Multiphysics® model was made to design a mechanical amplifier and radiation plate for the emission of high intensity 40.5 kHz ultrasound to air by means of a Langevin type transducer usually applied in cleaning baths for example. In this work, ultrasonic irradiation is aimed at ... Mehr lesen
MEMS(Microelectromechanical systems) based energy harvesting is process of extracting energy from natural resources in small amounts. Here, number of (millions) small energy harvesting modules lead to substancial energy. In this design, a piezoelectric material is used to scavenge ... Mehr lesen
The mechanical simulation and analysis of the cantilever-to-anchor configuration for an out-of-plane structure used in transducer applications is reported. The polymer-based Buckled Cantilever Plate “BCP” structure, gives the ability to orient an active device from a horizontal to a ... Mehr lesen
Microfluidic devices based on acoustophoresis have garnered significant attention due to their potential applications in biomedical and chemical analysis. Acoustophoresis employs acoustic waves to manipulate and separate particles within microfluidic channels according to their size, ... Mehr lesen
The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT ... Mehr lesen
This article reports the design of a high-power ultrasound system, capable of emitting acoustic radiation at 20kHz with SPL peaks up to 160dB at a distance of up to 1m. The main problem of high power airborne ultrasonic systems lies in the acoustic impedance mismatch between the radiator ... Mehr lesen