Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
The conductivity of seawater directly correlates with the concentration of dissolved salts. This model demonstrates a new approach to the methodology of inductive conductivity measurement of seawater and other liquids. COMSOL Multiphysics® was used to build a parametrically swept model ... Mehr lesen
The prediction of concrete materials service life is not easy, because the complex heterogeneous microstructure and the random nature of concrete materials. Study the presence of cracks in concrete and their effect on coupled reaction and transport are of great interest in civil ... Mehr lesen
Uncertainty in COMSOL Multiphysics® software simulations due to (a) model parameter uncertainties and (b) mesh-induced truncation errors, is estimated using a design-of-experiments approach [1, 2, 3], and a nonlinear least squares logistics fit method [4, 5], respectively. Examples to ... Mehr lesen
Results presented are a contribution to the design of a 5kW-DC-AC-converter for applications in forklifts. The device is located in a closed environment and entirely operated with passive cooling. Due to concurrent engineering approach and environmental conditions correct prediction of ... Mehr lesen
This project utilizes the heat transfer module of the COMSOL Multiphysics environment to model the effects that an ohmic heating probe will have on neural tissue. The model quantifies the thermal impact of active components embedded on a neural micro probe by solving the Penne’s bioheat ... Mehr lesen
This work presents a method to calculate AC losses in thin conductors such as the commercially available second generation superconducting wires through a multiscale meshing technique. The main idea is to use large aspect ratio elements to accurately simulate thin material layers. For a ... Mehr lesen
A numerical simulation study, using COMSOL Multiphysics®, was carried out to examine the temperature and concentration fields in the dissolution process of silicon into germanium melt. This work utilized a simplified configuration which may be considered to be similar material ... Mehr lesen
Globally in Otolaryngology industry, Sinusitis is one of the most common diseases related to the nose. Sinusitis is caused when the cilia fail to move the mucus. As a result sinus tissue gets infected that leads to blockage of the sinuses. All the sinusitis can not be cured through drugs ... Mehr lesen
A three-dimensional finite element model, based on the linear field equations for superimposed small vibrations onto nonlinear thermoelastic stressed media given by Lee and Yong, was developed. This method involves solving the thermal stress and piezoelectric model with geometric and ... Mehr lesen
The flow channel design on bipolar plates affects proton exchange membrane (PEM) fuel cell performance by influencing reactant distribution and water removal in an operating fuel cell. The fuel cell performance can be improved by varying the type, size, or arrangement of channels. Two ... Mehr lesen
