Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Lithium microbatteries are replacing conventional power sources in many microsystems areas such as wireless sensors and biomedical monitors. In many of these applications, compact models of micro batteries are needed both at the microsystems design stage and at the real-time power ... Mehr lesen
The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT ... Mehr lesen
The flow morphology of two immiscible fluids in a microfluidic device finds numerous applications such as emulsification, synthesis of nanomaterials [1], lab-on-a-chip devices and biological analysis [2]. It offers many advantages over the conventional macroscopic devices because of its ... Mehr lesen
The Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a two-stage electric propulsion system comprising of a helicon plasma source and an inertial electrostatic confinement (IEC) device for plasma production and acceleration, respectively. Several diagnostics such as a ... Mehr lesen
In this paper we present a method to reduce the comb drive gap in micro electro mechanical systems (MEMS) beyond the minimum fabrication feature size. The benefit of reducing the gap space between comb drive fingers is to increase its sensitivity to changes in capacitance due to ... Mehr lesen
We applied the Hot Wire (HW) technique and COMSOL Multiphysics software to study the heat transfer of a homogeneous and isotropic solid material. The HW technique is based on the application of a linear power density modulated by a rectangular pulse of heat, in a specific time period. ... Mehr lesen
In this work a miniaturized fuel cell design based on microchannels, into which the liquid fuel and oxidizer streams are fed through T shaped connectors, is optimized for improved fuel usage. This particular design exploits the laminar nature of the fluid flow at small Reynolds numbers ... Mehr lesen
The paper outlines a two-dimensional computational methodology and presents results for laminar/laminar condensing flows inside mm- scale ducts. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady and ... Mehr lesen
The next-generation of Extremely Large Telescopes adaptive optics systems require high-order, long-stroke, quite large deformable mirrors. Higher forces and greater actuator densities than the ones provided by the current technology are needed, still maintaining the severe accuracy and ... Mehr lesen
In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is ... Mehr lesen
