Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
The material wood is frequently used in construction industry for several elements such as window frames. However, as a hygrothermal material, wood is sensitive to moisture induced damage. In this context, the moisture uptake of wood based windows logged with an integrated relative ... Mehr lesen
Introduction: Recently, Li-ion battery is being widely used as power source for various applications from electronic gadgets to automotive industry. The performance and cycle life of Li-ion battery are becoming gradually important issues as the applications are shifting from small scale ... Mehr lesen
With a view to estimating electrical characteristics of a Polymer Li-ion Battery during specific charge and discharge conditions, a COMSOL Multiphysics® model has been developed that accounts for electrochemical phenomena inside the device. Cell model has been created using the Li-Ion ... Mehr lesen
Abstract: A 3.2V/10Ah LFP aluminum-laminated batteries are chosen as the target of the present study. A three-dimensional thermal simulation model is established based on finite element theory and proceeding from the internal heat generation of the battery[13]. The study illustrates a ... Mehr lesen
A 3D (three-dimensional) model of a vanadium redox flow battery (VRFB) with interdigitated flow channel design is proposed to study the distributions of fluid pressure, electric potential, current density and over-potential during operation. The performance of a VRFB with and without ... Mehr lesen
In general battery cells are charged/discharged using constant current or constant power expressed as C-Rates and P-Rates respectively. We are developing a single cell-level Li-Ion battery model in order to simulate the performance and the physicochemical phenomena under power ... Mehr lesen
The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics ... Mehr lesen
Dr. Bernardi is a Research Engineer with Ford Motor Company in Dearborn, MI. Her research focuses on the analysis and simulation of electrochemical energy-storage and conversion systems. In particular, Dr. Bernardi develops mathematical models that predict system behavior and identify ... Mehr lesen
The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is ... Mehr lesen
A new method is proposed to study battery thermal behavior under nature convection condition, especially focusing on temperature rising and inhomogeneity of battery. Using porous electrode theory, an electrochemical and homogenization heat source thermal coupling model and an ... Mehr lesen
