Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
A well-collimated intensity profile at long distance has long been a desired laser property crucial for many potential applications. Extending a non-diverging range for ordinary laser beyond kilometers scale would permit superior performance for optical technologies, including LIDAR, or ... Mehr lesen
Irradiation of various surface materials by ultra-short laser radiation, typically with pulse widths of 10-300 fs, results in the development of Laser-induced self-organized periodic surface structures (ripples). The periodicity of these structures ranges from the wavelength <em>λ ... Mehr lesen
Time-dependent multiphysical simulation of pulsed and continuous laser welding of dissimilar metals, based on Moving Mesh (ALE) approach, is proposed. Strong coupling between heat transfer, laminar compressible flow and ALE is used. The model was validated for a case of single ... Mehr lesen
Additive manufacturing gathers technologies where near net shape components are produced by depositing successive layers of materials. Among these technologies, the Layer Beam Melting (LBM) process – often referred to as Selective Laser Melting (SLM) – is garnering industrial interest, ... Mehr lesen
We present here the development of an optical human eye model – based on Ray Optics module in order to reproduce the eye optical properties. Current simulations in literature do not fully cover the light propagation inside all parts of the eye by taking into account the absorption but ... Mehr lesen
A millimeter-scale soft crawling robot is demonstrated that uses a similar mechanism to move efficiently in a variety of configurations: on horizontal, vertical, as well as upside-down surfaces; on smooth and rough surfaces; and through obstacles comparable in size to its dimensions. The ... Mehr lesen
Laser-induced forward transfer (LIFT) is a non-contact direct-write technique that enables the deposition of small volumes of material into user-defined high-resolution patterns with a wide range of structural and functional materials. There are many variations of the LIFT process, each ... Mehr lesen
The Finite Element Method (FEM) has become an established numerical tool used for different academic and industrial purposes. It allows the prediction of weld pool geometry, thermal cycle, final distortion and residual stress field during and after fusion welding. The capability of the ... Mehr lesen
This work investigates the ablation of a copper surface caused by the irradiation of a 220 ns laser pulse. Our focus is on the heat transport within the copper and takes the proceeding vaporization of surface substance into account. Our model ignores plasma dynamics and simulates the ... Mehr lesen
INTRODUCTION The purpose of this work is to verify the effect of Multigrid method on the CPU time for the resolution of the heat transfer model, based on the Finite Element Method (FEM), in order to simulate the laser surface remelting (LSR) of the Al–1.5 wt.% Fe alloy. To accelerate the ... Mehr lesen
