Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

Optics, Photonics and Semiconductorsx

Evaluating Nanogaps in Ag and Au Nanoparticle Clusters for SERS Applications Using COMSOL Multiphysics®

R. Asapu [1], R. Ciocarlan [2], N. Claes [3], N. Blommaerts [1], S. Bals [3], P. Cool [2], S. Denys [1], S. Lenaerts [1], S. W. Verbruggen [1]
[1] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Belgium
[2] Department of Chemistry, PLASMANT Research Group, University of Antwerp, Belgium
[3] Department of Physics, EMAT Research Group, University of Antwerp, Belgium

Silver and gold nanoparticles are widely used in the field of surface enhanced raman spectroscopy (SERS) because of the unique plasmonic properties. Plasmons or surface plasmon resonance result from the wavelength dependent dielectric properties of noble metals like Ag, Au, Pt etc., ... Mehr lesen

Biologic Tissues Properties Deduction Using an Opto-Mechanical Model of the Human Eye

A. V. Maurer [1], D. P. Enfrun [1], C. O. Zuber [1], R. Rozsnyo [2],
[1] R&D, Kejako, Plan-les-ouates, GE, Switzerland
[2] MNCM, HES-SO, GE, Switzerland

The visual accommodation is a complex biomechanical & optical process. Today in vivo imaging technologies do not allow to measure the eye components material properties, such as the refractive index or the stiffness: these properties are essential to understand and diagnose the ... Mehr lesen

Silicon-Organic-Hybrid Independent Simultaneous Dual-Polarization Modulator: Device Theory and Design

Y. D'Mello [1], M. Hui [1], J. Skoric [1], M. Haines [1], A. Kirk [1], M. Andrews [1], D. Plant [1],
[1] McGill University, Montréal, QC, Canada

The Complementary Metal-Oxide-Semiconductor (CMOS) technology is a gateway to fabricating low cost electronic and photonic components to date. The Silicon-based nanophotonics platform leverages CMOS technology to fuel the effort to provide increasingly high-speed and high-bandwidth ... Mehr lesen

Numerical Analysis and Optimization of a Multi-Mode Interference Based Polarization Beam Splitter

Y. D'Mello [1], E. Elfiky [1], J. Skoric [1], D. Patel [1], D. Plant [1]
[1] McGill University, Montréal, QC, Canada

The progression toward smaller and faster photonic circuits has led to the development of nanophotonic platforms capable of compacting many devices onto an integrated chip. These devices, as well as the input and output grating couplers, are sometimes polarization dependent, which allows ... Mehr lesen

COMSOL Multiphysics® Implementation of a Genetic Algorithm Routine for Optimization of Flat Optics

B. Adomanis [1], M. Marciniak [1],
[1] Air Force Institute of Technology, Wright-Patterson AFB, OH, USA

Introduction: In recent years, metasurfaces have been demonstrated to control the phase and amplitude of light across a planar interface and implemented for optical functions such as beam-steering, focusing, and polarization rotation. Initial efforts using plasmonic-based scatterers ... Mehr lesen

Simulation Based Characterization of CdS Thin Film Transistor

W. Wondmagegn [1],
[1] Frostburg State University, Frostburg, MD, USA

Current vs. voltage characteristics simulations of field effect transistors based on CdS semiconductor have been carried out using the drift-diffusion model. In the present investigation, the two-dimensional device simulation was performed using COMSOL’s semiconductor module. The device ... Mehr lesen

Towards Easily Tunable Mid-infrared Surface Plasmon Resonance With Gold Nano-crescent Structures

F. Liu [1],
[1] St. Mary's Ryken High School, Leonardtown, MD, USA

Mid-infrared, which interacts with most of the chemicals and creates spectra with functional group and fingerprint information, is widely used as a chemical sensing method for a variety of applications, including biomedical testing, quality control in electronics manufacturing and food ... Mehr lesen

Full-wave Simulation of Light Propagation through a Quarter-wave Plate

C. S. Lin [1],
[1] Pitotech. Co. Ltd., Changhua City, Taiwan

Advances in 3D display technology relies heavily on the birefringence of light as it propagates through various optical components such as quarter-wave plates. While Jones matrix formulation is commonly employed as a convenient means to study optical systems involving such optical ... Mehr lesen

Design of a Nucleic Acid Biosensor Using COMSOL Multiphysics®

L. Velmanickam [1], D. Nawarathna [1], V. Jayasooriya [1],
[1] Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA

Cancer is one of the leading causes of deaths worldwide. According to the American Cancer Society, there will be about 700,000 cancer related deaths in US in 2017. Cancer mortality will be reduced if it is detected and treated at the early stages. Previous studies have shown that ... Mehr lesen

Simulating Surface Plasmons at Metal Surfaces and Its Application in Optoelectronic Devices

L. Wang [1],
[1] Konica Minolta Laboratory, San Mateo, CA, USA

Surface plasmon polaritons (SPP) are guided electromagnetic modes of a metal/dielectric interface. These surface electromagnetic waves arise through the coupling of the incident electromagnetic radiation with the collective charge-density oscillations of the free electrons in a metal. ... Mehr lesen