Die Modell Galerie umfasst COMSOL Multiphysics Modelldateien aus einer Vielzahl von Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Sie können fertige Modelle herunterladen sowie Schritt-für-Schritt-Anleitungen, mit denen Sie die Modelle nachbauen können, und verwenden Sie die Modelle als Ausgangspunkt für Ihre eigenen Anwendungen. Nutzen Sie die Quick Search, um die für Ihren Fachbereich relevanten Modelle zu finden. Um die Dateien herunterzuladen, loggen Sie sich ein oder erzeugen Sie einen COMSOL Access Account, der mit einer gültigen COMSOL Lizenz assoziiert ist.

Heat Sink

This model is intended as a first introduction to simulations of fluid flow and conjugate heat transfer. It shows you how to: Draw an air box around a device in order to model convective cooling in this box, set a total heat flux on a boundary using automatic area computation, and display results in an efficient way using selections in data sets.

Optimizing a Thermal Process

A thermal processing scenario is modeled whereby two heaters raise the temperature of a gas flowing through a channel. The Optimization Module is used to find the heater power to maximize the outflow temperature, while maintaining a constraint on the peak temperature at the heaters themselves.

Freeze-Drying

Freeze-drying, or lyophilization, is a process for drying heat-sensitive substances such as foods, blood plasma, and antibiotics. The wet substance is frozen and then, through sublimation, ice (or some other frozen solvent) is removed in the presence of a high vacuum. This example models the process of ice sublimation in a vial under vacuum-chamber conditions, a test case for many freeze-drying ...

The Magnus Effect

The Magnus effect explains the curl that soccer players can give the ball, resulting in the enjoyable goals that we can see in every World Cup™. This model looks at the Magnus effect in the laminar and turbulent flow regimes for transient and stationary flows. It also discusses the simulation results and relates them to experimental measurements on soccer balls found in the literature.

Mixed Diffuse-Specular Radiation Benchmark

This model shows how to use the Mathematical Particle Tracing interface to simulate mixed diffuse-specular reflection between surfaces in an enclosure. This model is separated in two parts. The first part compares the heat fluxes computed by the Mathematical Particle Tracing interface with the exact solution for two identical infinitely long parallel grey plates under mixed diffuse-specular ...

Turbulent Flow Over a Backward Facing Step

The backward facing step is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion. Spatial variations in the velocity field cause production of turbulence outside the wall region and its interaction with ...

Thermo-Mechanical Analysis of a Surface-Mounted Resistor

The drive for miniaturizing electronic devices has resulted in today’s extensive use of surface-mount electronic components. An important aspect in electronics design and the choice of materials is a product’s durability and lifetime. For surface-mount resistors and other components producing heat it is a well-known problem that temperature cycling can lead to cracks propagating through the ...

Free Convection in a Water Glass

This model treats the free convection and heat transfer of a glass of cold water heated to room temperature. Initially, the glass and the water are at 5 °C and are then put on a table in a room at 25 °C. The nonisothermal flow is coupled to heat transfer using the Heat Transfer module.

Evaporative Cooling of Water

This tutorial shows how to couple three physics interfaces to model evaporative cooling. The effects need to be taken into account are heat transfer, transport of water vapor and fluid flow. User-defined expressions are used to implement the source term for the water vapor and evaporative heat source, as well as the moist air feature to accurately describe the material properties.

Phase Change

This example demonstrates how to model a phase change and predict its impact on a heat transfer analysis. When a material changes phase, for instance from solid to liquid, energy is added to the solid. Instead of creating a temperature rise, the energy alters the material’s molecular structure. Equations for the latent heat of phase changes appear in many texts but their implementation is ...

1 - 10 of 78 First | < Previous | Next > | Last