Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Simulations of MEMS Based Piezoresistive Accelerometer Designs in COMSOL

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Taiwan, (R.O.C)
[2]National Tsing Hua University, Taiwan, (R.O.C)

Different configurations of MEMS based accelerometer has been made and analysed using COMSOL Multiphysics. The designs presented in this paper consist of a square shaped proof mass with flexures supporting it. Different position and varied number of supporting flexures attached to the proof mass makes each configuration distinct. The piezoresistors are placed near the proof mass and frame ends ...

Mie Scattering of Electromagnetic Waves

J. Crompton[1], S. Yushanov[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

The Mie solution to the scattering of electromagnetic waves by spherical particles has been examined using COMSOL Multiphysics®. The results assume elastic scattering only and do not include Brillouin or Raman scattering. The nature of the interaction has been considered for materials with three different properties: metallic, magnetic and dielectric. The solutions provide details of the ...

Study of Effect on Resonance Frequency of Piezoelectric Unimorph Cantilever for Energy Harvesting

G. R. Prakash[1], K. M. V. Swamy[1], S. Huddar[1], B. G. Sheeparamatti[1], Kirankumar B. B.[1]
[1]Basaveshwar Engineering College, Bagalkot, Karnataka, India

The focus of this paper is to study the effect on resonance frequency and power enhancement techniques[1] of piezoelectric MEMS and modeling, design, and optimization of a piezoelectric generator based on a two-layer bending element(Figure 1) using COMSOL Multiphysics. An analytical relation was developed based on the shift in resonance frequency(Figure 2) caused by the addition of a thin film ...

Acoustic Streaming Driven Mixing

N. Nama [1], P. Huang [1], F. Costanzo [1], T. J. Huang [1]
[1] Department of Engineering Science and Mechanics, Pennsylvania State University, PA, USA

Introduction - The ability to achieve rapid and homogeneous mixing at microscales is one of the essential requirements for various lab-on-a-chip applications [1]. The flow at microscales is characterized by low Reynolds number, resulting in laminar flow patterns. Thus, the mixing at microscales is dominated by slow diffusion process. Recently, an rapid and homogeneous mixing was demonstrated ...

Adaptive Numerical Simulation of Streamer Propagation in Atmospheric Air

S. Singh[1], Y. Sedyuk[1], R. Summer[2]
[1]Chalmers University of Technology, High Voltage Engineering, Gothenburg, Sweden
[2]Schneider Electric, Regensburg, Germany

Simulations of streamer discharge was performed by utilizing a space adaptive numerical scheme based on logarithmic representation of mass conservation equations, which governs the transport of charge carriers. Implementation of a model, which describes the propagation of a streamer in air at atmospheric pressure is discussed. Results of numerical simulations of a nanosecond discharge are ...

Analysis of 3-D Printed Structural Components for Cube Satellites - new

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

Influence of Air Gap Length and Cross-Section on Magnetic Circuit Parameters - new

A. Polit[1], R. Jez[1]
[1]ABB Corporate Research Center, Krakow, Poland

The air gap is one of the most crucial part of magnetic circuits, especially in high-power inductors. It significantly modifies the parameters of magnetic devices by increasing the saturation current, linearizing B-H curve of magnetic circuit and causing a decreasing in the inductance. Therefore the optimal selection of shape and dimensions of the air gap is very important from the design point ...

Design and Stress Analysis of a General Aviation Aircraft Wing

G. Atmeh[1], F. Darwish[1], and Z. Hasan[2]
[1]Jordan University of Science and Technology, Irbid, Jordan
[2]Texas A&M University, College Station, TX, USA

The present study focuses on the design and analysis of a single-engine, propeller-driven general aviation airplane. Initial weight estimation based on the initial sketch and the design mission profile is conducted. The estimated weight and other design parameters are used to define the external geometry of the fuselage, wing and tail. Conic lofting is utilized to render a layout of the design ...

A Study of Thermal Stress Distribution Produced During MEMS Packaging

V. Sharma[1], A. K. Jayanthy[1], J. G. Baruah[1], J. V. Prabhu[1], K. Balakrishnan[1]
[1]SRM University, Chennai, Tamil Nadu, India

The analysis performed is categorized into two levels: 1. The thermal stress distribution on the sensing part with the variation in the substrate three glass material with appropriate dimensions and exposures. The reason behind this consideration of different materials is test the compatibility with the crystal. This variation in substrate material and its material properties shows which is ...

Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation

M. Jaegle
Fraunhofer-Institute for Physical Measurement-Techniques (IPM), Freiburg, Germany

Electro-thermal interaction is commonly considered only as a matter of joule heating. In addition, the Seebeck-, Peltier- and Thompson-Effects are significant in materials with high thermoelectric figure of merit Z. These thermoelectric materials have a high Seebeck-coefficient α, a good electric conductivity σ, and a poor thermal conductivity λ. They have widespread areas of ...

1 - 10 of 3390 First | < Previous | Next > | Last