Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Modeling the Thermally Induced Curvature of Multilayer Coatings with COMSOL MultiphysicsTM

H. Conrad[1], T. Klose[2], T. Sandner[2], D. Jung[1], H. Schenk[2], and H. Lakner[1,2]
[1]Semiconductor and Microsystems Technology Laboratory, Technische Universität Dresden, Germany
[2]Fraunhofer Institute for Photonic Microsystems Dresden, Germany

Within this paper the so called “birth and death” method is demonstrated in use with COMSOL Multiphysics®. With this method the free and reactionless movement of a solid structure on deformed geometries and the activation of this solid structure at later simulation steps is possible. For demonstrating the benefit, this method was applied to simulate the thermal induced ...

The use of COMSOL for Building Constructions Engineering Regarding Heat and Moisture Transport

H. Schellen, A. van Schijndel, and P. Briggen
Eindhoven University of Technology, Eindhoven, Netherlands

Hunting Lodge St. Hubertus is one of the most prominent Dutch buildings from the early twentieth century. An extensive study of wind and wind-driven rain (WDR) was conducted to provide insight into the moisture load of the building facade, using measurements and CFD simulations. COMSOL Multiphysics was also used for modeling the moisture transport through the walls of the tower. The model ...

Kinetics and Reactor Modeling of Methanol Synthesis from Synthesis Gas

H. Bakhtiary, F. Hayer, H. Venvik, A. Holmen
Norwegian University of Science and Technology Trondheim

Methanol synthesis is a typical reaction in heterogeneous catalysis. In this work, we have studied a laboratory fixed-bed reactor packed with a Cu/Zn/Al2O3 catalyst in both adiabatic and isothermal tubular operational modes. A methanol synthesis kinetic model was implemented in COMSOL Reaction Engineering Lab. Both 1D and 2D pseudo-homogeneous dispersion models were applied to describe the mass ...

Linear Water Wave Propagation around Structures

L. Martinelli, and A. Lamberti
Universita di Bologna, Italy

Objective of this contribution is to show how to implement the Mild Slope Equations with COMSOL Multiphysics. These equations are commonly used to study the propagation of waves in harbors. Some interesting features are presented, namely the use of weak terms (used for the modelling of the source term); the evaluation of a smooth phase gradient from the complex dependent variable; a robust ...

Thermal and Material Flow Modelling of Friction Stir Welding Using COMSOL

H. Schmidt[1,2], and J. Hattel[1]
[1]Technical University of Denmark, Kgs. Lyngby, Denmark
[2]HBS Engineering, Frederiksberg, Denmark

Two friction stir welding models are presented – a global thermal model using the temperature dependent heat source and a local material flow and heat generation model allowing for detailed investigation of different contact conditions. The two models are coupled into a larger local-global model. The flow model includes frictional dissipation from the contact between the work piece and the ...

Analysis of Ancient Natural Ventilation Systems inside the Pitti Palace in Florence

C. Balocco
Dipartimento di Energetica “Sergio Stecco”, Università degli Studi di Firenze, Firenze, Italy

This paper presents and discusses the first phase results of a wide ranging project concerning the study and prediction of the efficiency and energy performances of natural ventilation systems existing inside historic buildings. The air flow patterns, air temperature and air velocity distribution inside a historic building in Florence, the Pitti Palace, were studied by a transient simulation. A ...

Modeling of Respiratory Lung Motion as a Contact Problem of Elasticity Theory

R. Werner, J. Ehrhardt, and H. Handels
University Medical Center Hamburg-Eppendorf, Germany

Breathing motion is a major problem in radiotherapy of lung tumors. The development of techniques to adequately account for respiratory motion requires detailed knowledge about breathing dynamics. Thus, computer aided modeling of respiratory motion gains in importance. In this paper we present an approach to modelling a respiratory lung. Main aspects of the process of lung ventilation are ...

COMSOL Multiphysics in Education – Chemical Reactions, Heat and Mass Transfer

R. Geike
Maschinenbau, Verfahrens- und Umwelttechnik, TFH Berlin, Berlin, Germany

In our Master program entitled “Verfahrenstechnik / Process Engineering” the main focus is placed on the use of computational method. This paper will present the plan of a particular course entitled “Transportprozesse” (Transport Processes or Transport Phenomena). The contents of our lectures and exercises deal with mass and heat transfer, chemical reactions and fluid ...

Implementation of the Finite Isotropic Linear Cosserat Models based on the Weak Form

J. Jeong[1], and H. Ramezani[2]
[1]Ecole Speciale des Travaux Publics du Batiment et del’Industrie(ESTP), Cachan, France
[2]Ecole Polytechnique de l’Universite d’Orleans CNRS/CRMD, Orleans, France

The Cosserat models fall into the group of the extended continuum media. They are capable of treating the size effects (characteristic length) in a natural manner using six material moduli for the isotropic elastic cases instead of two (and) for the classical continuum mechanics. This model involves two constitutive laws corresponding to two kinds of balance equation. The first one handles the ...

Simulation of Optical Properties of the Si/SiO2/Al Interface  at the Rear of Industrially Fabricated Si Solar Cells

Y. Yang[1], and P. Altermatt[1,2]
[1]Institute for Solar Energy Research Hamelin (ISFH), Emmerthal, Germany
[2]Dep. Solar Energy Research, Inst. Solid-State Physics, Leibniz University of Hanover, Germany

The specular and diffuse reflection properties of sunlight at the rear surface of silicon solar cells with various degrees of roughness are computed by solving the Maxwell and material equations in two dimensions, using the COMSOL RF Module. The model is tested on planar Si/SiO2/air interfaces and planar Si/SiO2/Al interfaces. The simulations show that for wavelengths of 800 nm, (i) maximum ...