Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Stefan's Problem: Validation of a One-Dimensional Solid-Liquid Phase Change Heat Transfer Process

D. Groulx, and W. Ogoh
Dalhousie University, Halifax, NS, Canada

A 1D phase change problem, known as Stefan’s problem, for which analytical solutions are available, is solved as a 2D problem using COMSOL Multiphysics. The PCM medium is semi-infinite, initially solid at its melting temperature Tm, and at t = 0, the wall temperature is raised to Tw > Tm, prompting the PCM to start melting, from pure conduction, in a linear fashion starting at x = 0. The length ...

Coil Systems to Generate Uniform Magnetic Field Volumes

J.C. Olivares-Galvan[1], E. Campero-Littlewood[1],
R. Escarela-Perez[1], S. Magdaleno-Adame[2], and E. Blanco-Brisset[2]
[1] Universidad Autonoma Metropolitana - Azcapotzalco, Mexico City, DF, Mexico
[2] Cipress No. 88, Col. Las Arboledas, La Piedad, MH, Mexico.

This paper analyzes different types of coil systems to produce volumes of uniform magnetic field. Some types of coil system are presented in this paper such as Helmholtz, Merritt, and Ruben coil systems. In the study coil systems are intended to produce a magnetic flux density of 2µT in the center of the coil. The calculation of the magnetic flux density is done with COMSOL using analytical ...

Simulating the Electrical Double Layer Capacitance

G. Zhang
Clemson University, Clemson, SC, USA

When a solid surface makes contact with a liquid medium, an electrical double layer (EDL) structure forms spontaneously through thermodynamic interaction between electrons and ions. In this study, we developed a computational model using commercial finite element analysis package COMSOL Multiphysics to simulate the double layer structure and quantify the EDL capacitance for the first time. In ...

Dimensionless versus Dimensional Analysis in CFD and Heat Transfer

H. Dillon[1], A.F. Emery[1], A. Mescher[1], and R.J. Cochran[2]
[1]University of Washington, Seattle, WA, USA
[2]Applied CHT, Seattle, WA, USA

Students in engineering and science are often exposed early in their studies to non dimensional analysis. When it comes to solving fluid flow/heat transfer problems, many solutions, particularly industrial ones, are based on finite element/finite volume using dimensioned quantities. In order to compare to reference information one would like to use codes like COMSOL Multiphysics to solve non ...

Implementation of the Perfectly Matched Layer to Determine the Quality Factor of Axisymmetric Resonators in COMSOL

M.I. Cheema, and A.G. Kirk
McGill University, Montreal, QC, Canada

Due to the inseparability of the wave equation, numerical methods are needed to develop an accurate electromagnetic model for various axisymmetric resonators such as micro-discs and micro-toroids. Our purpose is the implementation of a perfectly matched layer to determine the quality factor of axisymmetric resonators with high accuracy in COMSOL. We treated the perfectly matched layer as an ...

Modeling of a Helical Coil Heat Exchanger for Sodium Alanate Based on-board Hydrogen Storage System

S. Kumar[1], and M. Raju[2]
[1]General Motors R&D Center, Warren, MI, USA
[2]Optimal CAE Inc., Detroit, MI, USA

Hydrogen refueling in a metal hydride based automotive hydrogen storage system is an exothermic reaction and hence an efficient heat exchanger is required to remove the heat for fast refueling. In this paper a helical coil heat exchanger embedded in a sodium alanate bed is modeled using COMSOL. Sodium alanate is present in the shell and the coolant flows through the helical tube. A three ...

Non-Newtonian Hemodynamics and Shear Stress Distribution in Three Dimensional Model of Healthy and Stented Coronary Artery Bifurcation

M.M. Zarandi[1], R. Mongrain[1], and O.F. Bertrand[2]
[1]McGill University, Montreal, QC, Canada
[2]Laval University Quebec City, QC, Canada

In this paper, a three-dimensional model of the coronary artery bifurcation is developed and physiological flow in the both healthy and stented coronary artery bifurcation is modeled using COMSOL Multiphysics. Wall shear stress induced by endovascular stents in the coronary artery bifurcation is analyzed considering both non- Newtonian and Newtonian flow models. Our simulations shows that the ...

Conducting Finite Element Convergence Studies Using COMSOL 4.0

M.K. Gobbert, and D.W. Trott
University of Maryland, Baltimore, MD, USA

We will show how to carry out convergence studies of the FEM error on a sequence of progressively finer meshes in COMSOL Multiphysics on the example of Lagrange elements of varying polynomial degrees, which will also bring out the benefit of using higher order elements. The sample studies will focus on Lagrange elements of degree 1 through 5. For these elements, the convergence order of the ...

Virtual Acoustic Prototyping – Practical Applications for Loudspeaker Development

A. Salvatti
JBL Professional, Northridge, CA, USA

The author presents an overview of methods to build virtual prototypes of both horns and loudspeaker drivers which allows a significant reduction in the number of physical prototypes, as well as reduced development time. This paper will present some of the practical results from work the author has performed in the course of designing both transducers and horns using COMSOL Evolution of the ...

Analysis of Lubricant Flow Through Reynolds Equation

K.C. Koppenhoefer[1], S.Y. Yushanov[1], L.T. Gritter[1], J.S. Crompton[1], and R.O. Edwards[2]
[1]AltaSim Technologies LLC, Columbus, OH, USA
[2]Cummins Fuel Systems, Columbus, IN, USA

Reynolds equation is used to analyze fluid flow through small gaps. As such, the solution of Reynolds equation provides critical information for a wide range of tribological problems. In any case where a lubricant resides between two moving surfaces, the Reynolds equation can be used to solve for the flow. In the case considered in this paper, lubricant flows between a piston and housing forced ...