Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Evaluation of CO2 Leakages From An Aquifer Storage

A. Thoraval[1], R. Farret[2], A. Cherkaoui[2], and P. Gombert[2]
[1]INERIS, Nancy, France
[2]INERIS, Verneuil, France

This paper presents preliminary estimations of CO2 overpressure into the reservoir and CO2 leakage through the caprock and the overburden. A simple, two-phase flow model in porous media based on Darcy’s law was used, in order to explore easily long time periods. The models produced by COMSOL Multiphysics allow sensitivity studies and preliminary evaluations of the relations between CO2 leakage ...

Microsoft Technical Computing

H. Steepler
Microsoft, Sweden

Henrik Steepler earned his PhD in Computer Science in 1999 at Chalmers University, Sweden. Since 2003, he has been working at Microsoft on emerging markets like Security, Virtualization, and since 2007 on their High Performance Computing (HPC) initiative. He is now managing the partner network for Microsoft in Europe, the Middle East, and Africa around HPC.

Simulation of the Mechanical Stability of Inkjet-Printed Hierarchical Microsieves

S.F. Jahn[1,3], S. Ebert[2], M. Hackert[1], W.A. Goedel[2], R.R. Baumann[3], and A. Schubert[1,4]
[1]Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany
[2]Chemnitz University of Technology, Physical Chemistry, Germany
[3]Chemnitz University of Technology, Professorship for Digital Printing and Imaging, Germany
[4]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Porous membranes with pore sizes in the micrometer scale are required in many micro systems dedicated to biological and chemical applications. If their thickness is in the same dimension like the pore diameter they are called microsieves. On the one hand, a thin membrane guarantees a small flow resistance but on the other hand the mechanical strength is reduced. We developed a process which ...

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with COMSOL

A.T. Vermeltfoort, and J. van Schijndel
Eindhoven University of Technology, the Netherlands

The tensile strength of masonry is relatively low compared to its compressive strength and is affected by the direction of the joints and their filling. In masonry with modern thin layer mortar (joint thickness 3 to 5 mm) sometimes the head joints are left open. A total of 13 model-walls was built and for each model four general purpose mortar combinations and three thin layer mortar combinations ...

Analysis Of The Design Criteria For Ancient Greek And Roman Catapults

K.M. Paasch
Center for Product Development, Mads Clausen Institute, South Danish University, Denmark

This paper will give a short overview of use of COMSOL Multiphysics for analyzing ancient Greek and Roman catapults with the main focus on the energy storing torsion springs. Catapults have been known and used in the Greek and Roman world from around 399 BC and a fully standardized design for powerful torsion catapults emerged around 270 BC, based on one basic factor, the diameter of the torsion ...

The GEM Technology for the SBS at Jefferson Lab

F. Noto[1], V. Bellini[1], E. Cisbani[2], and C. Sutera[1]
[1]INFN Sez. di catania, Università di Catania, Italy
[2]INFN Sez. Roma, Italy

The Gas Electron Multiplier (GEM) technology has proven to tolerate rate up to 50 MHz/cm2 without noticeable aging and to provide the required resolution on working chambers up to 33x33 cm2. The SBS GEM chambers have been designed in a modular way: each chamber consists of 3 adjacent GEM modules. Each GEM module has an active area of 40x50 cm2, which 2 represent the current standard double mask ...

Finite Element Modelling For Optimizing A Hyphenated Rheometer/Calorimeter

C. Block[1], B. Van Mele[1], and V. Janssens[2], P. Van Puyvelde[2], and G. Van Assche[1]
[1]Vrije Universiteit Brussel, Physical Chemistry and Polymer Science, Brussels, Belgium
[2]Catholic University of Leuven, Lab of Applied Rheology and Polymer Technology, Heverlee, Belgium

COMSOL is used for optimization of the design of a novel analytical technique, RheoDSC, which combines a rheological and a calorimetric measurement on one sample. A rheological experiment is performed on a sample positioned on a DSC sensor in a DSC instrument. DSC is used to study transition enthalpies and heat capacity in isothermal and non-isothermal conditions. The working principle of a ...

Quick Search

181 - 187 of 187 First | < Previous | Next > | Last