Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

2018 - Allx

Simulation of Adsorption Mechanisms of Methane and Carbon Dioxide in Shale Matrix

J. G. Moreira [1], A. L. Manriquez [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

The aim of this research is to contribute with the development of Carbon Capture and Storage techniques by studying carbon dioxide (CO2) adsorption mechanisms in shale reservoirs. Gas desorption is considered a major gas production mechanism and has a relevant role in shale gas ... Mehr lesen

Plasmon Enhanced Fluorescence Characteristics Government by Selecting the Right Objective Function

M. Csete [1], A. Szenes [1], D. Vass [1], B. Bánhelyi [2], T. Csendes [2], G. Szabó [1]
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Department of Computational Optimization, University of Szeged, Szeged, Hungary

Core-shell type plasmonic nanoresonators have been optimized to maximize the fluorescence rate of coupled dipolar emitters, namely SiV color centers in diamond. The RF module of the COMSOL Multiphysics® software was applied to extract the optical response and to analyze the near-field ... Mehr lesen

Numerical Simulation of Coupled Fluid-Solid Interaction in Digital Rock Samples

V. Das [1], T. Mukerji [1], G. Mavko [1],
[1] Stanford University, Stanford, CA, USA

Digital rock physics (DRP) is an emerging field where a rock sample is imaged, relevant physical processes are simulated numerically on the digital rock sample, and the numerical solutions are used for understanding and interpreting the rock in different in-situ conditions. The use of ... Mehr lesen

Numerical Evaluation of the Polarizability Tensors of Stem Cells with Realistic 3D Shapes

S. Baidya [1], A. M. Hassan [1], B. A. Pazmiño Betancourt [2], J. F. Douglas [2], E. J. Garboczi [3],
[1] Computer Science Electrical Engineering Department, University of Missouri - Kansas City, Kansas City, MO, USA
[2] Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
[3] Applied Chemicals and Materials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA

Most of the reported studies on the electrical characteristics of biological cells assume that they have simple shapes like spheres or ellipsoids due to the lack of information about their accurate 3D shape. However, the actual shape of a cell can be quite fractal and it must be taken ... Mehr lesen

Nonhomogeneous Heat Transfer Simulation Using a Female Human Model

M. Castellani [1], T. Rioux [1], X. Xu [1],
[1] U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA

Previously researchers have modeled the human body using CAD software to create geometries that are approximately the same shape as the human body. While these CAD designs appear similar, they do not account for complex organ anatomy or sudden changes at the skin surface. Now, the human ... Mehr lesen

Multiphysics Simulation of 2nd Generation 238Pu Production Designs Using the COMSOL Multiphysics® software

C. J. Hurt [1], J. D. Freels [1], A. Elzawawy [2],
[1] Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA

In order to qualify experiments for in-vessel irradiation at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, safety assessments need to be completed and documented to ensure adequate target cooling and structural integrity. Previously, finite element analysis ... Mehr lesen

Multidisciplinary Simulation Based Learning Enhancement Module

A. K. Datta [1], M. Ukidwe [1], A. Warning [1], K. Bhunia [1],
[1] Cornell University, Ithaca, NY, USA

Simulation based learning modules can be effectively introduced to a large audience with customization. The simulation modules can essentially engage learners from diverse background and efficiently introduce the quantitative approaches to non-engineers. Moreover, those can greatly help ... Mehr lesen

Modeling Two Phase Fluid Flow in High Speed Counter Current Chromatography

G. Stevens [1], K. Weisbrod [1], R. Chamberlin [1], S. Yarbro [1],
[1] Los Alamos National Laboratory, Los Alamos, NM, USA

High-speed counter current chromatography (HSCCC) is a unique process presenting possibilities for efficient separations by creating a large interfacial area between two phases in counter current flow. Millifluidic channels rotate about both planetary and solar axes to create a rapidly ... Mehr lesen

Modeling of Avalanche Breakdown in Silicon and Gallium Nitride High-Voltage Diodes using COMSOL®

J. R. Dickerson [1], G. W. Pickrell [1], R. J. Kaplar [1],
[1] Sandia National Laboratories, Albuquerque, NM, USA

For high-power semiconductor devices to function correctly, it is imperative to manage the electric fields inside of the device. This is typically done using an edge termination scheme such as guard rings or junction termination extensions. Edge terminations are used to spread localized ... Mehr lesen

Modeling Heat Transfer Through Filament Yarns by Random Geometry Creation

N. Anand [1], W. J. Jasper [1], E. DenHartog [1],
[1] North Carolina State University, Raleigh, NC, USA

Filament yarns are a collection of microfibers of set diameter and material held together by tension and/or intra-filament attraction. This results in a stacking patterns which can be random with different degrees of freedom. A slight change in tension or attractive forces may mean a ... Mehr lesen