Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird.

Lassen Sie sich von den neuesten Simulationsprojekten inspirieren

Papers und Präsentationen der COMSOL Conference 2018

Auf der COMSOL-Konferenz 2018 präsentierten Wissenschaftler und Ingenieure aus aller Welt ihre multiphysikalischen Simulationsprojekte. Erfahren Sie, wie Forscher in Ihrer Branche derzeit numerische Modellierung einsetzen, um Designs zu optimieren, Prozesse zu rationalisieren und Produkte zu verbessern, indem Sie in den folgenden technischen Publikationen und Präsentationen stöbern. Verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden oder filtern Sie einen bestimmten Anwendungsbereich oder Konferenzort heraus.

2018 - Allx

Modeling Confinement in Quantum Dot Solar Cells

J. Liu [1], M. Zubaer Hossain [1],
[1] Department of Mechanical Engineering, University of Delaware, Newark, DE, USA

The efficiency of the first and second generations of solar cell has hardly seen dramatically increase over the years, in which most PV cells cannot use about 55% of the energy of sunlight because a single material can not capture the entire spectrum of sunlight. To achieve the objective ... Mehr lesen

Finite Element Simulation of Impulse Arc Discharge

A. Chusov [1], E. Rodikova [1], M. Pinchuk [2], Y. Murashov [3], Vladimir Frolov [3], Dmitriy Ivanov [3],
[1] Streamer Electric Inc., St.Petersburg, Russia
[2] Institute for Electrophysics and Electrical Power, St.Petersburg , Russia
[3] St.Petersburg Polytechnical University, Russia

Damages caused by lightning overvoltages remains to be an important issue for electrical industry, putting limitations for efficiency of transmission and distribution of electrical energy. Modern solutions for lightning protection such as multichamber arresters (MCA) for overhead ... Mehr lesen

Adaptive Mesh Refinement: Quantitative Computation of a Rising Bubble Using COMSOL Multiphysics®

T. Preney [1], P. Namy [1], J. Wheeler [1]
[1] SIMTEC, Grenoble, France

The mesh is a key component in numerical simulations as it represents the spatial discretization of the model geometry. To accurately measure the variation of the unknowns, a relevant mesh should have a high density of degrees of freedom in regions where the norm of the gradient of the ... Mehr lesen

Light-tissue Interaction Modeling Using COMSOL Multiphysics® for Multi-layered Soft Tissues

Vysakh V [1], Sujatha Narayanan Unni [1],
[1] Indian Institutes of Technology Madras, Chennai, Tamil Nadu, India

Soft tissues are longest tissue structures found throughout a human body. It plays a vital role in connecting, providing support or surround other structures and organs of the body. Muscles, skin, tendons, ligaments, nerves, fibrous tissues, fat, blood vessels are commonly classified as ... Mehr lesen

Two-Phase Flow Modeling of Metal Vaporisation under Static Laser Shot Using a Double ALE Method

Y. A. Mayi [1], M. Dal [1], P. Peyre [1], M. Bellet [2], C. Metton [3], C. Moriconi [3], R. Fabbro [1],
[1] PIMM Laboratory, UMR 8006 Arts et Métiers-CNRS-CNAM, Paris, France
[2] CEMEF Laboratory, UMR 7635 PSL Research University MINES ParisTech, Sophia Antipolis, France
[3] Safran, Paris Cedex, France

Additive manufacturing gathers technologies where near net shape components are produced by depositing successive layers of materials. Among these technologies, the Layer Beam Melting (LBM) process – often referred to as Selective Laser Melting (SLM) – is garnering industrial interest, ... Mehr lesen

Finite Element Prediction of Laser-Material Interaction Using COMSOL Multiphysics®

E.C. Chevallier [1], V. Bruyère [1], P. Namy [1],
[1] SIMTEC, Grenoble, France

Surface engineering is a key technology used in a wide range of sectors in industry. Among other techniques, it involves adding functionality to a surface. This can be performed by creating a specific topography to a surface using laser texturing. The objective of the work presented in ... Mehr lesen

Multi-objective Optimization of Microneedle Design for Transdermal Drug Delivery

M. Sarmadi [1], K. McHugh [1], R. Langer [1], A. Jaklenec [1],
[1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA

Microneedles have been recognized as a potent and novel method of transdermal drug delivery over the last decade. Despite recent advances in nano- and microfabrication techniques, less is known about the structural properties and design optimization of microneedles in a systematic ... Mehr lesen

Free Surface Deformation of the Weld Pool in Orbital Narrow Gap GTA Welding

S. Morville [1], V. Bruyère [2], P. Namy [2],
[1] Technical Center FRAMATOME, Le Creusot, France
[2] SIMTEC, Grenoble, France

Arc current welding is a widespread process in heavy industry for the assembly of metallic components. In order to ensure the good quality of assemblies welds, it is appropriate to master the welding process but also to have a deep understanding of interactions with the weld pool and ... Mehr lesen

Modeling of Random Nanostructures Based on SEM Images and Analysis of Resulting RF-Performance

K. Neumann [1], J. Moeller [1], L. Kuehnel [2], A. Rennings [1], N. Benson [2], R. Schmechel [2], D. Erni [1],
[1] General and Theoretical Electrical Engineering (ATE), University of Duisburg-Essen, and CENIDE – Center for Nanointegration Duisburg-Essen, Duisburg, Germany
[2] Institute for Nanostructures and Technology (NST), University of Duisburg-Essen, and CENIDE – Center for Nanointegration Duisburg-Essen, Duisburg, Germany

In the last few years printable electronics has gained a great deal of interest since it promises mechanical flexibility and extremely low production costs. One approach to achieve printable electronic devices relies on the usage of specific inks containing e.g. dispersed semiconductor ... Mehr lesen

Transient Simulation of the Removal Process in Plasma Electrolytic Polishing of Stainless Steel

I. Danilov [1], M. Hackert-Oschätzchen [1], I. Schaarschmidt [1], M. Zinecker [1], A. Schubert [1],
[1] Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany

Plasma electrolytic polishing (PeP) is an electrochemical method for surface treatment. In detail PeP is a special case of anodic dissolution [1] that unlike electrochemical polishing requires higher voltage and uses environment friendly aqueous solutions of salts. When the process ... Mehr lesen

1–10 of 374