Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
在处理波导驱动的磁性材料时,需要用到本课题组基于COMSOL平台开发的微磁学模块[1-3]与COMSOL自带的射频模块耦合。两个模块的耦合方法为互相交换一个物理量:微磁学模块将解出的磁化强度m导入到电磁波模块本构关系的磁化强度中;而电磁波模块将解出的磁场强度h添加到微磁学模块的有效场中。 依据任务的不同,我们可以选择不同的电磁波模块。对于求解静磁自旋波的问题,AC/DC中的mfnc模块即可符合需求。该模块既可以与微磁学频域模块联合进行频域求解,也可以与微磁学时域模块联合进行时域计算。但是对于存在电磁波导的问题,由于我们有端口的需求,以及体系具有可比拟几何尺度的电磁波长 ... Mehr lesen
铁磁材料中的各类磁织构有望为新一代信息处理与存储的硬件方案奠定基础,比如磁畴壁和磁性斯格明子(skyrmion)等。基于本课题开发的COMSOL微磁学模块可以仿真介观层面上磁性材料内磁矩的动力学行为,即求解Landau-Lifshitz-Gilbert方程。在本工作中,我们利用COMSOL微磁学模块计算了铁磁体系中两类磁织构的动力学行为。首先,在准一维的铁磁体系中,两个180°磁畴壁之间由于交换相互作用产生近程的拓扑排斥效应,因此通过塞曼场将它们挤压在一起可以生成一个360°磁畴壁,这个360°磁畴壁中存在一维自旋波的束缚态。其次,在准二维的铁磁体系中 ... Mehr lesen
本文介绍一种使用COMSOL Multiphysics 软件进行电声和电磁器件仿真的方法。电声与电磁器件在工作过程中通常涉及电磁能-机械能-声学的多物理场的转换,因此与COMSOL Multiphysics的特点十分契合。与上述三种物理场对应,在仿真过程中需要使用AC/DC模块、结构力学模块和声学模块,最终获得BL值、频响曲线等预测物理数值以及声压分布图、磁通密度分布图这种更具直观视觉效果的物理数据3D彩图。上述仿真方法通常会遇到以下问题,首先是几何网格剖析密度的选择,需要对结果准确度和计算效率进行平衡取舍。第二是随着材料学科的迅速发展,COMSOL ... Mehr lesen
中子不带电但有磁矩和 1/2 自旋,自旋极化的中子可以作为探测材料磁性结构的有力探针。与核磁共振成像技术原理类似,极化中子的极化矢量在外磁场的作用下会发生拉莫尔进动,以外磁场方向为轴进行旋转。基于此原理,使用电磁铁产生足够均匀的磁场并通过调整电流大小即可以实现对极化矢量方向的精确调控。由于中子极化矢量对磁场极为敏感,而在中子束流截面内的任何磁场变化,包括磁场大小与方向偏差,均会导致极化中子发生退极化,影响测量精度。我们基于 COMSOL AC/DC 模块的模拟分析与设计,实现了一个基于 YBCO 高温超导体薄膜、高磁导率坡莫合金以及 REBCO ... Mehr lesen
磁性和弹性是材料中最基础的两种性质。由于磁弹耦合作用,磁性材料的某些声学模式可以显著地影响其磁性模式,反之亦然。利用磁弹耦合作用可以实现声波的非互易性传播、声波驱动的磁畴壁和磁斯格明子、声波辅助的磁化翻转等等。 我们利用了COMSOL Multiphysics内置的固体力学模块以及课题组开发的微磁学模块。我们可以在时域中仿真磁弹耦合波的传播、磁结构的稳定和运动,可以在频域中仿真磁弹耦合波的本征模式、磁斯格明子的呼吸和旋转模式。在频域中,我们利用floquet边界条件设置布洛赫周期并进行参数化扫描,可以更快速地计算磁弹耦合波的能谱。 通过COMSOL ... Mehr lesen
磁性斯格明子是磁性系统中的一种准粒子自旋结构,其受拓扑保护和易被自旋极化电流驱动的性质使其在赛道存储器、自旋逻辑门、神经形态计算等应用领域备受关注。基于自主开发的COMSOL Multiphysics的微磁学模块,我们设计了一种具有周期性缺陷纹样的斯格明子赛道,利用空间结构的不均匀性和垂直磁各向异性产生对斯格明子的强钉扎效应以实现数据寄存,通过操控极化电流脉冲产生的自旋轨道力矩实现斯格明子在缺陷位上的定向跳跃以实现数据移位,并可在初始位上生成不同的斯格明子序列以实现数据串的整体操控。该模型设计已在室温下的Ta/CoFeB/MgO多层膜体系中通过实验证实。 Mehr lesen
本研究设计了一种模块化的多米诺磁谐振无线传能系统。WPT系统包含发射端模块、中继模块和接收端模块,其中发射和接收线圈与对应电路板分别封装于两端结构件当中。这种模块化的方式减少封装难度,并且不会减少绝缘子的绝缘距离。通过有限元模拟计算可知,两端模块化的结构不会对系统的磁场、电场和温度场造成明显影响。 通过comsol软件对WPT系统各部分进行了电-磁-热仿真计算,包括:(1)电磁感应热仿真,明确得到了PCB电路铜导线的尺寸设计参数;(2)电磁仿真,为线圈设计提供理论支撑和参数确定;(3)电场仿真,明确结构设计的可行性和可靠性。 Mehr lesen
在传统的电子磁透镜设计中,大多是由单个线圈电流来控制铜线圈绕组来产生可变磁场,其中热功率的耗散通常由常规的水冷、风冷体系来实现,因此设计一种具有恒定热功率耗散机制的电子磁透镜热管理系统是至关重要的。通过结合COMSOL Multiphysics®的AC/DC模块和优化模块,实现了具有双绞互抵线圈设计的恒功率磁透镜结构计算。模型网格划分采用差异化自定义大小的三角形网格划分为主,来控制模型的计算精度和计算机内存占用以及总计算时长。研究了为保证恒定功率输出,双绞线圈绕组的驱动电流IA和IB的关系。在此基础上,计算了不同工作电流对透镜场分布和功率的影响 ... Mehr lesen
微磁学仿真(micromagnetics simulation)是自旋电子学与磁学领域中重要的一种重要的研究手段,本质上通过求解Landau-Lifshitz-Gilbert(LLG)方程来对磁性体系中磁矩的动力学进行仿真。微磁学仿真的主流软件以开源为主,包括OOMMF、Mumax3等,然而其在工程上的应用以及与多物理场耦合的扩展性仍有所不足。我们基于COMSOL的Physics Builder创立了微磁学仿真模块,不仅能够实现已有的微磁学仿真功能,还能够与COMSOL内置的多物理场进行耦合,如磁弹耦合、磁光耦合、各向异性磁电阻等,为学术研究和工程应用提供了新的接口 ... Mehr lesen
本文主要围绕微波连续流反应器内电磁热特性的影响因素进行分析,以分层物料温升效果为指标探究波导旋转、物料种类、腔体材料和壁面厚度的影响。其中的难点在于:1.微波穿透深度低且介质均质性,微波加热过程中容易产生热点,并可能发生热失控[1,2]。此外,微波加热是一个复杂的过程,其中所涉及材料的介电性能取决于温度[3-5]。3.在工业应用中动态加热过程中存在能量利用率低、加热均匀性差等问题仍需解决。为了克服这些缺点,已经进行了几次努力来改进微波反应器[6-10]。 使用COMSOL Multiphysics软件,将电磁场、层流和温度场进行耦合,采用多物理场仿真方法 ... Mehr lesen