Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Modeling of fractured porous media systems is currently of high interest in various academic and applied fields, mainly in the geological and material sciences. The very different scales of the region of an application case on the larger end and the fracture on the lower end pose a ... Mehr lesen
Mechanical simulation at one pair of asperity contact has been conducted using the COMSOL Multiphysics® software and the Structural Mechanics Module to study the sliding friction of rock fractures surface as real fracture surface contact slides driven by pressure solution. The evolving ... Mehr lesen
This paper proposes a solution method using piezoelectric sensors to detect an anomaly, such as a deformation caused by a crack or fracture, in a pipeline. COMSOL Multiphysics, a simulation software, is used to induce anomalies of different magnitudes to a pipe and record the data from ... Mehr lesen
Overpressure-driven hydrofracture zones are pipe-like structures and widespreadly develop in sedimentary basins worldwide. They have the ability to penetrate vertically for multiple kilometers, acting as pathways for fluid on the basin scale. When the hydrofracture zone penetrates the ... Mehr lesen
Even though failure due to the presence of flaws, inclusions, cracks or crack like defects has been observed in structural components operated under magnetic fields. The creation of the ferrous man-made structures, however, the formulations of various fracture theories and the ... Mehr lesen
When treating fractures of the accessory carpal bones in horses, it is important to understand the forces that implants (screws and plates) must withstand. The etiology of the fracture is not fully understood, but their high incidence during exercise suggests a relation to biomechanical ... Mehr lesen
The study of bentonite erosion mechanisms in fractures is a problem of maximum interest to understand the long-term performance of the engineered barrier in deep geological repositories of spent nuclear fuel. In this context, erosion due to shear by seeping water, sedimentation due to ... Mehr lesen
In applications like nuclear reactors or particle accelerators, mechanical components near a source of radiation develop radiation damage. This typically means a change in tensile properties and fracture toughness, which depends on the radiation dose (commonly measured in ‘displacements ... Mehr lesen
Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite ... Mehr lesen
Introduction: Modeling biological structures is challenging due to their often complex anatomical geometries and material properties. Finite element studies of the femur, the largest and strongest bone in the human body, have focused on the femoral neck, since this is where fractures ... Mehr lesen