Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

AC/DC Electromagneticsx

Simulator for the Development of Electromagnetic Heart Assist Devices

D. G. Hurd [1],
[1] Iowa State University, Ames, IA, USA

Every year, in the United States alone, more than 40,000 infants are born with congenital heart defects (CHD) and an additional 550,000 adults are diagnosed with heart failure. Every year, $110 billion is spent on treating heart attacks and $20-39 billion on heart failure in the US. The ... Mehr lesen

Numerical Evaluation of the Polarizability Tensors of Stem Cells with Realistic 3D Shapes

S. Baidya [1], A. M. Hassan [1], B. A. Pazmiño Betancourt [2], J. F. Douglas [2], E. J. Garboczi [3],
[1] Computer Science Electrical Engineering Department, University of Missouri - Kansas City, Kansas City, MO, USA
[2] Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
[3] Applied Chemicals and Materials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA

Most of the reported studies on the electrical characteristics of biological cells assume that they have simple shapes like spheres or ellipsoids due to the lack of information about their accurate 3D shape. However, the actual shape of a cell can be quite fractal and it must be taken ... Mehr lesen

Improving Thermal Effect on Biological Tissue using Multiphysics Simulation and Shape Optimization

A. Ward [1],
[1] System Insight Engineering, Centennial, CO, USA

As minimally invasive and robotic surgical devices get smaller, designing precise energy delivery to create the desired tissue effect becomes a key component in product development. With many interdependent physical phenomena occurring simultaneously, it becomes necessary to use tools ... Mehr lesen

Evaporative Cooling in Solar Absorption Chiller

J. Ma [1], M. J. Suh [1],
[1] Sam Houston State University, Huntsville, TX, USA

Solar cooling systems based on evaporation and absorption processes have been actively studied and different mechanisms based on various refrigerants are designed and developed. Amongst these systems, a single-stage close cycle design utilizing lithium bromide salt and water (LiBr-H2O) ... Mehr lesen

Electromagnetic Simulation of Split-Core Current Transformer for Medium Voltage Applications

N. Paudel [1], V. Siddharth [1], S. Shaw [1], D. Raschka [1],
[1] ABB, Inc., Instrument Transformers & Distribution Components, Pinetops, NC, USA

In electric distribution network, current and voltage measurement for metering, monitoring, and protection & control applications is done via instrument transformers (current and voltage transformers). These measurement devices are deployed during the construction phase of the ... Mehr lesen

Development of Eddy Current Probe using FEM for Matte Level Detection in Pyrometallurgical Furnaces

A. Saleem [1], P. R. Underhill [1], D. Chataway [2], T. Gerritsen [2], A. Sadri [2], T. W. Krause [1],
[1] Department of Physics and Space Science, Royal Military College of Canada, Kingston, ON, Canada
[2] Hatch Ltd., Mississauga, ON, Canada

Pyrometallurgical furnaces are used to produce metals such as copper, nickel and platinum by the smelting process. During smelting, the undesired material components are separated from the desired metal resulting in the formation of a slag and matte/metal phase. The slag phase ... Mehr lesen

Automated Meshing of Evolving Microstructures from High-Throughput Grain Growth Simulations

M. Golt [1], E. Hernandez-Rivera [1],
[1] U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA

Microstructure evolution simulations using the kinetic Monte Carlo algorithm and the phase field method are routinely used to model and simulate sintering and densification of ceramic and metallic materials. Understanding evolution of microstructural features is important as these are ... Mehr lesen

Analysis of Electromagnetic Fields in Urban Environments

J. Crompton [1], L. Gritter [1], S. Yushanov [1], K. Koppenhoefer [1],
[1] AltaSim Technologies, Columbus, OH, USA

Electromagnetic fields are pervasive in today’s urban environment and under certain circumstances exposure has led to safety hazards that have been reported to cause personal injury. The United States Department of Labor has reported multiple cases of electrical shock on construction ... Mehr lesen

Computational Fluid Dynamics Approach to Evaluate Electrostatic Precipitator Performance

M. Ahmadi [1]
[1] Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands

Electrostatic precipitation is an extremely efficient way of filtering fine particles from the airstream. Electrostatic precipitators (ESPs) can control airborne emission without significantly slowing down the rate of flow, because of the low pressure drop across this type of filters. A ... Mehr lesen

Radiofrequency Ablation and Its Effect on Heat Generation on Ground Pads

J. J. Barrett [1], M. Brown [1,][2],
[1] Halyard Health, Alpharetta, GA, USA
[2] Georgia Institute of Technology, Atlanta, GA, USA

Radiofrequency ablation (RFA) is a minimally invasive procedure that can be used to treat chronic pain. Radiofrequency (RF) energy is emitted through a probe that is placed near a sensory nerve in the region of pain. The RF energy excites the nearby ions in the tissue causing them to ... Mehr lesen