Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Using COMSOL Multiphysics for Designing a Hybrid Electromagnetic Launcher

R. Kroczek, and J. Domin
Silesian University of Technology, Gliwice, Poland

This paper describes consecutive stages of design and construction of electromagnetic gun manufactured at the Silesian University of Technology. It gives insight into current knowledge about such a launcher. The computer model was elaborated in COMSOL Multiphysics version 3.5. The numerical analysis was carried out a 3-dimensional space. The physical model was build up and comparison of the ...

Heat-Sink Solution through Artificial Nanodielectrics for LED Lighting Application

N. Badi[1], R. Mekala[2]
[1]Department of Physics, Center for Advanced Materials, University of Houston, Houston, TX, USA
[2]Department of Electrical & Computer Engineering, University of Houston, Houston, TX, USA

Thermally conducting but electrically insulating materials are needed for heat-sink LED lighting applications. We report on a cost effective and innovative method based on creating core-shell nanoparticles in polymer with aluminum (Al) nanoparticles as the high thermal conductivity core and ultrathin aluminum oxide (Al?O?) as a capping shell. The solid oxide shell around the Al core prevents ...

Dynamic Electromagnetic Analysis of Guitar Pickup Aided by COMSOL Multiphysics

T. Furukawa[1], H. Tanaka[2], H. Itoh[1], H. Fukumoto[1], M. Ohchi[2]
[1]Saga University, Saga City, Saga, Japan
[2]Chiba Institute of Technology

In transient analyses of electromagnetic fields with moving media, it is difficult to grasp the phenomena theoretically in the same manner of the convective heat diffusion since the treatment of the coupled problem with the field and dynamics must be necessary. In this presentation, we illustrate the dynamic magnetic flux patterns in the electric guitar pickup, where the string will move over ...

Analysis of Dielectrophoretic Force by Using COMSOL

Taewoo Lee[1]
[1]Department of Biomedical Engineering, Yonsei University, Seoul, South Korea

Dielectrophoresis is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field. In this research, we analyze dielectrophoretic (DEP) force using a geometry containing two electrodes, one with SiO2 and one without, with a gap between them. The relevant governing equations include the DEP force, the electrohydrodynamic and corresponding ...

Finite Element Modeling of Eddy Current Probes for CANDU® Fuel Channel Inspection

M. S. Luloff [1], T. W. Krause [2], J. Morelli [1],
[1] Queen's University, Kingston, ON, Canada
[2] Royal Military College of Canada, Kingston, ON, Canada

CANDU® reactor pressure tubes (PT) contain D2O, which is used as a moderator. Surrounding the PTs are gas-filled Calandria Tubes (CT), which thermally isolate the PTs from the moderator surrounding the fuel channels. If the garter springs move apart, the PT will sag into the CT. Under contact conditions, the thermal gradient between the hot PT and cold CT accelerates the ingress of deuterium ...


张春 [1], 朱铧丞 [1], Ashim Datta [1],
[1] 四川大学,成都,四川,中国

引言:微波干燥过程涉及多物理场的耦合,物理过程十分复杂。不仅有被加热物质的形态改变,还有气态、液态和固态三相的相互作用。为了更清楚地理解微波干燥过程,本模型将电磁场、多相流和物理变形用相应的方程耦合到一起建模分析,并用相应的物理参数表征微波干燥过程。(图1) COMSOL Multiphysics® 的使用:借鉴微波加热接口土豆模型,添加气体和固体传热接口以及自定义方程,用方程和参数实现多物理场耦合。实验模型中,干燥物为土豆,且被视为多孔弹性介质。物质变形用相应的矩阵来表征。 结果:在仿真结果的基础上,利用家用微波炉干燥土豆,设计实验,并测量了微波干燥过程中的重要物理参数,如温度、水分和形变。(图2,图3) 结论:该仿真模型和实验基本吻合 ...

A Model for High Temperature Inductive Heating

S.A. Halvorsen[1]
[1]Teknova AS, Kristiansand, Norway

COMSOL Multiphysics has been applied to develop a model for inductive heating. A coarse, lumped model of the interior of a high temperature reactor is coupled to finite element models for the electromagnetic field, the temperature distribution outside the reactor, and mechanical stresses in the crucible. The model can be applied to study operational conditions, thermal stresses, or design ...

Magnetic Stimulation of the Human Brain with Low-Intensity Field

D. Lazutkin[1], A. Harkara[2], and P. Husar[1]
[1]Ilmenau University of Technology, Ilmenau, Thuringia, Germany
[2]Simpleware Limited, Exeter, Devon, United Kingdom

The most popular means of depression treatment are psychotherapy, antidepressant medication and recently adopted transcranial magnetic stimulation (TMS) of the human brain. To overcome their disadvantages we are investigating an application of low-field magnetic stimulation (LFMS) to depression treatment. The 3D electromagnetic model of LFMS has been developed. It employs 8 small coils disposed ...

Coupled Electromagnetic - Dynamic FEM Simulation of A High Frequency MEMS Energy Harvester

E. Topal
Middle East Technical University

In this study, a detailed finite element model coupling the motion dynamics and electromagnetics of a diaphragm based MEMS vibration energy harvester is presented. The energy harvester converts low frequency vibrations to high frequency response by magnetic actuation of a diaphragm carrying coils. AC/DC, Solid Mechanics and Moving Mesh (ALE) modules are coupled together in one 3-D model to ...

Finite Element Analysis of Defibrillation Current Density in Pregnant Women

A. Jeremic[1], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada

Although resuscitation during pregnancy is relatively uncommon and rarely causes death, they have a particularly large impact in terms of the mortality of the unborn child and long-term effects on families and society as whole. In this paper, we present a new 3D finite element model of a pregnant female torso which accounts for presence of amniotic liquid and calculate current density ...