Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Electro Thermal Performance Prediction of Radio Frequency Ablation System for Efficient Cancer Treatment

C. Thiagarajan[1], V. Gnanasekar[2]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka, India.
[2]Perfint Healthcare Pvt. Ltd, T.Nagar, Chennai, India.

Cancer causes significant human deaths. Radiofrequency ablation is an encouraging procedure for cancer treatment. The objective is to demonstrate the multiphysics simulation methodology. This paper summarizes the problem , governing equations, methodology, assumptions, simulation results and discussion related to the thermal performance prediction of radio frequency ablation on a homogeneous ...

Development of Magnetic Field Components for the Polarisation Option of the Neutron Spectrometer FOCUS

L. Holitzner[1], U. Filges[1], J.P. Embs[2], T. Fennell[2], T. Panzner[1]
[1]Laboratory for Developments and Methods, Paul Scherrer Institut, Villigen, Switzerland
[3]Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen, Switzerland

We show a new, favourable space-saving method to host a neutron polarizer in the iron-containing monochromator shielding of a time-of-flight spectrometer for cold neutrons. In this poster you can learn e.g., how to create a robust, homogeneous, rectangular magnetic field (here realized by permanent magnet queues inside an iron tube). The time-of-flight spectrometer FOCUS at the spallation ...

Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL Multiphysics® Software

D. Wijesinghe [1], K. Nawarathna [1],
[1] Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA

We have used COMSOL Multiphysics® software to design a micropipette for single -cell gene expression profiling. The micropipette design allows us to insert it into a single-cell to extract genes through dielectrophoresis. As dielectriphoretic force depends on the applied electric field (E) and its gradient (∇E^2), we have successfully used COMSOL to calculate E and ∇E^2 in the vicinity of the ...

Design and Simulation of an Electromagnetic Valve Actuator Using COMSOL Multiphysics

R. Wislati , H. Haase
Leibniz Universität Hannover, Germany

In this paper an electromagnetic solenoid actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) Systems for Internal Combustion Engines. In opposition to common approaches the underlying EMVA make use of a permanent magnet in the upper electromagnet. The analysis ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A.Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only are these additional domains result in an increased number of degrees of freedom which are strictly ...

Finite Element Analysis of Defibrillation Current Density in Pregnant Women

A. Jeremic[1], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada

Although resuscitation during pregnancy is relatively uncommon and rarely causes death, they have a particularly large impact in terms of the mortality of the unborn child and long-term effects on families and society as whole. In this paper, we present a new 3D finite element model of a pregnant female torso which accounts for presence of amniotic liquid and calculate current density ...

Modeling of Complex Structures in Electrotechnology

Göran Eriksson
Dr., ABB Corporate Research, Sweden

Outline of presentation: In electromagnetic technology applications the finite element method is very well suited for a wide range of problem types For many cases, in particular when inhomogeneous materials having complex properties are involved as well as when multiphysics couplings are essential, it is the only option available The somewhat unfavourable performance scaling with problem ...

Numerical Study of a DC Electromagnetic Liquid Metal Pump: Limits of the Model

N. Kandev[1]
[1]Institut de recherche d'Hydro-Québec, Shawinigan, QC, Canada

This work presents the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of an electromagnetic DC pump for liquid metal using a rectangular metal flow channel subjected to an externally imposed transversal inhomogeneous magnetic field. In this study. 3D numerical simulation based on the finite element method was carried out using the computer package COMSOL Multiphysics 3.5a. The ...

Doping Dependent I-V Characteristics of Single Silicon Nanowire

S. Mishra [1], S. K. Saxena [1], P. Yogi [1], P. R Sagdeo [1], R. Kumar [1],
[1] Indian Institute of Technology Indore, Indore, Madhya Pradesh, India

In the present work, we have studied the electron transport properties of single silicon nanowire using Semiconductor Module of COMSOLMultiphysics software. We construct a MSM (metal-semiconductor-metal) model where metal is selected as copper and semiconductor is taken as silicon. Silicon is doped with n-type impurity by increasing doping concentration. Further, the Schottky diodes formed at ...

Numerical Simulation of pH-sensitive Hydrogel Response in Different Conditions

M.K. Ghantasala[1], B.O. Asimba[1], A. Khaminwa[1], K.J. Suthar[2], D.C. Mancini[3]
[1]Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI, USA
[2]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
[3]Physical Sciences and Engineering, Argonne National Laboratory, Argonne, IL, USA

The understanding of pH-sensitive hydrogel swelling response in different buffer environmental condition is essential for its use in different practical applications. This necessitates its simulation in steady state and transient conditions. This paper mainly deals with the details of the numerical simulation performed by developing coupled formulation of chemo-electro-mechanical behavior of ...