Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Modelling Electric Fields in High Voltage Submersible Changeover Switch

K. Follesø
Bennex AS, Bergen, Norway

Controlling electric field distribution in high voltage components is critical to avoid excessive electric stress on the insulation and thus reducing the risk of insulation breakdown and damage to equipment. For subsea applications this is even more important due to the costs involved in accessing and replacing the damaged parts. This paper describes how COMSOL Multiphysics has been used for ...

Simple Finite Element Model of the Topografiner - new

H. Cabrera[1], D. A. Zanin[1], L. G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zürich, Zürich, Switzerland

In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a polycrystalline tungsten tip via electric-field assisted tunneling. In order to characterize and improve the ...


张春 [1], 朱铧丞 [1], Ashim Datta [1],
[1] 四川大学,成都,四川,中国

引言:微波干燥过程涉及多物理场的耦合,物理过程十分复杂。不仅有被加热物质的形态改变,还有气态、液态和固态三相的相互作用。为了更清楚地理解微波干燥过程,本模型将电磁场、多相流和物理变形用相应的方程耦合到一起建模分析,并用相应的物理参数表征微波干燥过程。(图1) COMSOL Multiphysics® 的使用:借鉴微波加热接口土豆模型,添加气体和固体传热接口以及自定义方程,用方程和参数实现多物理场耦合。实验模型中,干燥物为土豆,且被视为多孔弹性介质。物质变形用相应的矩阵来表征。 结果:在仿真结果的基础上,利用家用微波炉干燥土豆,设计实验,并测量了微波干燥过程中的重要物理参数,如温度、水分和形变。(图2,图3) 结论:该仿真模型和实验基本吻合,较清晰地反应了微波干燥的复杂物理过程。

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material

K. Z. Gomes [1], T. A. G. Tolosa [1], E. V. S. Pouzada [1],
[1] Mauá Institute of Technology, São Caetano do Sul, SP, Brazil

In this work, a methodology is developed, based on the application of finite element method in the frequency domain, using the COMSOL Multiphyics software, aiming the sensibility analysis of inductance calculation involving some configurations of an E-core magnetic circuit. Such important analysis, are made from several geometries and considering different frequencies for the source current ...

Numerical Simulation of Vibrationally Active Ar-H2 Microwave Plasma

F. Bosi [1], M. Magarotto [2], P. de Carlo [2], M. Manente [2], F. Trezzolani [2], D. Pavarin [2], D. Melazzi [2], P. Alotto [1], R. Bertani [1],
[1] Department of Industrial Engineering, University of Padova, Padova, Italy
[2] CISAS "G.Colombo", University of Padova, Padova, Italy

Microwave discharges have a wide range of applications, such as gas conversion, material processing and surface treatment; also they can provide an efficient way for dissociation of molecular gases as CO2 and N2O. Depending on the operating pressure and temperature, non-equilibrium conditions can be attained within the discharge, where electron temperature, vibrational temperature and ...

Analysis of a Prototype MRI Hybrid Birdcage RF Coil with Uncertainty Quantification (*)

J. T. Fong [1],
[1] National Institute of Standards & Technology, Gaithersbug, MD, USA

1. INTRODUCTION. In a magnetic resonance imaging (MRI) system (see Fig. 1), it is necessary to excite the nuclei of a patient into coherent precession for imaging. This requires coupling between the nuclei and a source of radio frequency (RF) power (the transmitter). To receive a meaningful signal, one also needs to couple the nuclei to an external circuitry (the receiver). These two ...

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

P. Masson[1], and R. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Superconductors have the unique capability of trapping magnetic flux. This feature has the potential to enable and improve several applications including high power density rotating machines. Current material used as trapped flux magnets (TFM) is single domain YBCO that present numerous limitations interms of performance, stability and size. One way to overcome the limitations is to use thin ...

Multiphysics Process Simulation of the Electromagnetic-Supported High Power Laser Beam Welding of Austenitic Stainless Steel

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The application of an oscillating magnetic field on the high-power full-penetration laser beam welding process of a 20 mm thick stainless steel plate was numerically and experimentally investigated. In the simulations, three-dimensional heat transfer and fluid dynamics as well as electromagnetics were solved taking into account the most important physical effects of the process, namely the ...

Elucidating the Mechanism Governing the Cell Rotation Behavior Under DEP

G. Zhang[1], Y. Zhao[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In our experiments with manipulating cells with DEP, we noted that some cells are constantly spining. By hypothesing that the cell spining is caused by the non-circular shape of the cell body and the off-centered location of its nucleus and that the rotation direction depends on the relative location of nucleus with respect to the electrical field, we found that the observed cell rotation was ...

Electromagnetic Well Logs Simulated with the COMSOL® RF Module on a Cluster - new

D. Swaminathan[1], G. Minerbo[1], K. Pathak[1]
[1]Drilling and Production Group, Schlumberger, Houston, TX, USA

Introduction Computer simulations are widely used for the interpretation and inversion of electromagnetic measurements in well logging. Until recently, simulated logs have been computed with approximate 1D or 2D models. By using the COMSOL® RF Module installed on a cluster, we show that a full 3D finite-element simulated log can be obtained within an acceptable turnaround time. Use of ...