Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

A Model for High Temperature Inductive Heating

S.A. Halvorsen[1]
[1]Teknova AS, Kristiansand, Norway

COMSOL Multiphysics has been applied to develop a model for inductive heating. A coarse, lumped model of the interior of a high temperature reactor is coupled to finite element models for the electromagnetic field, the temperature distribution outside the reactor, and mechanical stresses in the crucible. The model can be applied to study operational conditions, thermal stresses, or design details ...

Modeling Directional Two Arm Archimedes Spiral Coils in the RF Electromagnet Range

A. Kalinowski, and J. Maguire
Naval Undersea Warfare Center/Div. Npt. , Newport, RI, USA

The paper addresses a class of problems for modeling and consequently simulating the electromagnetic field radiation pattern from a two arm Archimedes spiral coil. The performance of particular interest is knowledge of the radiated magnetic field H and electric field E in the neighborhood of the coil. The results in this paper illustrate how COMSOL is used to solve for the radiated ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A.Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only are these additional domains result in an increased number of degrees of freedom which are strictly ...

Numerical Simulation of a Human Body Subjected to Electrostatic Fields for Study of the Turin Shroud Body Image

G. Fanti[1], L. Matordes[1], V. Amoruso[2], M. Bullo[1], F. Lattarulo[2], G. Pesavento[1]
[1]Dip. di Ingegneria Industriale, Università di Padova, Padova, Italy
[2]Politecnico di Bari, Bari, Italy

The TS (Turin Shroud) [1,2] is a fine linen fabric showing a not yet explainable [3] double body image of a scourged and crucified man stabbed on the side. Many hypotheses have been formulated without success [4] and perhaps the most reliable is one correlated to the Corona Discharge [5] that supposes the presence of an intense electric field, amplified by the presence of ionization induced by ...

Topographic Effects on Radio Magnetotelluric Simulations on Levees: Numerical Modeling for Future Comparison With Fields Results

R. Duval[1], C. Fauchard[1], R. Antoine[1]
[1]ERA23-IFSTTAR, Laboratoire des Ponts et Chaussées de Rouen, CETE-Normandie Centre, France

We study the topography influence of levees on the electric resistivity signal obtained with the Radio-Magnetotelluric method. Field measurements have been modeled with COMSOL, using the AC/DC and RF Modules. A levee situated in Orléans along the Loire river (France) has been considered in order to design a model tacking account of the skin depth and the incident wavelength, keeping a constant ...

Development of Magnetic Field Components for the Polarisation Option of the Neutron Spectrometer FOCUS

L. Holitzner[1], U. Filges[1], J.P. Embs[2], T. Fennell[2], T. Panzner[1]
[1]Laboratory for Developments and Methods, Paul Scherrer Institut, Villigen, Switzerland
[3]Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen, Switzerland

We show a new, favourable space-saving method to host a neutron polarizer in the iron-containing monochromator shielding of a time-of-flight spectrometer for cold neutrons. In this poster you can learn e.g., how to create a robust, homogeneous, rectangular magnetic field (here realized by permanent magnet queues inside an iron tube). The time-of-flight spectrometer FOCUS at the spallation ...

Modeling the ELENA Electron Cooler with COMSOL Multiphysics® Software - new

G. Tranquille[1]
[1]CERN, Geneva, Switzerland

ELENA is a small cooler decelerator ring at CERN which will be built to increase substantially the number of usable antiprotons delivered to experiments for studies with antihydrogen and antiprotonic nuclei. COMSOL Multiphysics® software has been used to completely model the ELENA electron cooling device in 3D. We have taken advantage of the different physics-based modules of COMSOL ...

Dynamic Simulation of Electromagnets

Harald Biller
Dr.
Continental Automotive Systems, Frankfurt, Germany

Harald Biller studied mathematics and physics at Darmstadt, London, and Würzburg. In 1999, he received his PhD from Stuttgart University, specializing in functional analysis, topology, and Lie theory. He worked as a lecturer at Darmstadt University until 2004, when he became a development engineer with the automotive supplier Continental, one of the leading producers of electronic brake and ...

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

P. Masson[1], and R. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Superconductors have the unique capability of trapping magnetic flux. This feature has the potential to enable and improve several applications including high power density rotating machines. Current material used as trapped flux magnets (TFM) is single domain YBCO that present numerous limitations interms of performance, stability and size. One way to overcome the limitations is to use thin ...

Evaluation Of AC Loss And Temperature Distribution In High Temperature Superconducting Tape Using COMSOL Multiphysics

G. Konar, and N. Charaborty
Jadavpur University, Kolkata, West Bengal, India

High temperature superconductors (HTS) are promising candidates for electrical power applications. However, the superconductors exhibits energy loss known as AC loss when exposed to time varying external magnetic field and/or transport current. In this paper, AC loss in an elliptical Ag sheathed Bi2223 (HTS) tape is calculated using the time dependent PDE mode of COMSOL Multiphysics. The HTS tape ...

Quick Search