Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Three-Dimensional Modeling of Electrical Scanning Probe Microscopy Problems

G. Gomila [1], L. Fumagalli [2], R. Fabregas [3],
[1] Institut de Bioenginyeria de Catalunya (IBEC), Departament d’Electrònica, Universitat de Barcelona, Barcelona, Spain
[2] School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
[3] Institut de Bioenginyeria de Catalunya (IBEC), Universitat de Barcelona, Barcelona, Spain

Electrical scanning probe microscopy (SPM) techniques, such as electrostatic force microscopy, nanoscale impedance microscopy or scanning near field microwave microscopy, are a relatively new branch of microscopy techniques that can generate images of the nanoscale electrical properties of samples (conductivity, permittivity, charge, etc.). These techniques scan the surface of a sample ...

Evaluation Of AC Loss And Temperature Distribution In High Temperature Superconducting Tape Using COMSOL Multiphysics

G. Konar, and N. Charaborty
Jadavpur University, Kolkata, West Bengal, India

High temperature superconductors (HTS) are promising candidates for electrical power applications. However, the superconductors exhibits energy loss known as AC loss when exposed to time varying external magnetic field and/or transport current. In this paper, AC loss in an elliptical Ag sheathed Bi2223 (HTS) tape is calculated using the time dependent PDE mode of COMSOL Multiphysics. The HTS ...

Using COMSOL Multiphysics in Eddy Current Non Destructive Testing Context

L. Santandrea, and Y. Le Bihan
Laboratoire de Génie Electrique de Paris, Gif-sur-Yvette, France

Eddy current testing (ECT) is widely used to check the integrity of electrically conducting parts and notably to detect flaws. It is based on the interaction between a probe and the part under testing. The finite element method (FEM) is well fitted to the modelling of these kinds of problems because of its large flexibility which allows to deal with complex probe and part configurations. In this ...

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on the interfacial morphologies and their transitions, the phenomenon termed electrohydrodynamics. The literature ...

Finite Element Analysis of Superconductive Tape by Using T-Ω Formulation

H. Arab[1], S. Memiaghe[1], C. Akyel[1]
[1]Ecole Polytechnique of Montreal, Montreal, QC, Canada

This paper deals with a numerical modelling technique based on finite elements method for computing magnetic field and current density distributions in high temperature Superconducting (HTS) tapes. The model is developed using the T-ῼ formulation for which the degree of freedom (DOF) and the CPU time decreased considerably in AC losses analysis, and it is also observe that T-ῼ formulation give ...

Design and Optimization of Electrostatically Actuated Micromirror

Anna Thomas[1], Juny Thomas[1], Deepika Vijayan[1], K.Govardhan[2]
[1]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, MEMS & Sensor Division, School of Electronics Engineering, Vellore, Tamil Nadu, India

The microscopic size of MEMS devices accounts for strong coupling effects which arise between the different physical fields and forces. Micromirrors are essential parts of microswitches in fiber optic network telecommunication. They are usually 1 to 3 mm in size, fabricated from single crystalline silicon and mostly are electrostatically actuated. The objective is to design the micromirror to ...

2D Simulation of Cardiac Tissue - new

S. Esfahani[1]
[1]University of South Florida, Tampa, FL, USA

A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the Courtemanche et al. cell model equations. PDE in coefficient form was used in COMSOL Multiphysics® to reproduce the ...

Multi-Layers Surface Coil Design: Geometry Optimization - new

S. Aissani[1], L. Guendouz[2]
[1]CRM2, Institut Jean Barriol, University of Lorraine, Vandoeuvre-lès-Nancy, France
[2]Mesures et architectures électroniques, University of Lorraine, Vandoeuvre-lès-Nancy, France

Nuclear Quadrupole Resonance (RQN) is a radio frequency (RF) spectroscopic technique that is used to detect quadrupole nuclei such as Nitrogen-14. NQR was found to be a good candidate for detecting narcotics, explosives and medicines [1]. However, due to its low sensitivity the use of NQR is still limited. One way to increase the sensitivity is to improve the RF coil by means of a better RF ...

Smart Chest Belt for Cardiac Health Monitoring - new

M. Vijayalakshmi[1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Conventional cardiac electrical signal monitoring and measurement techniques such as Electrocardiograph (ECG) are prone to operator error due to multiple lead attachment requirements. These multiple electrode based systems are also not convenient for continuous cardiac health monitoring, though ECG is the best way to measure and diagnose abnormal rhythms of the heart. In this paper, a smart ...

Simulation of Sample Inhomogeneity in Microwave Impedance Microscopy

T. S. Jones [1], C. R. Pérez [1], J. J. Santiago-Avilés [1],
[1] University of Pennsylvania, Philadelphia, PA, USA

Microwave impedance microscopy (MIM) is a novel mode of atomic force microscopy that can measure topography and local electrical impedance simultaneously and with nanometer spatial resolution [1]. This technique is typically used qualitatively, identifying defects in nanodevices or imaging ferroelectric domain walls, for example. However, the technique also has the potential to be used in a more ...