Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

AC/DC Electromagneticsx

Particle Concentration Effect On Dielectrophoretic Trapping

M. A. Saucedo-Espinosa [1], B. H. Lapizco-Encinas [2],
[1] Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
[2] Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA

Dielectrophoresis (DEP) is an electric field driven technique that has important applications in the enrichment, concentration and isolation of biological and non-biological particles. The assessment of particle trapping capacity using DEP, however, has been qualitative in nature; since ... Mehr lesen

Optimization of Insulator-Based Dielectrophoretic Devices

M. A. Saucedo-Espinosa [1], M. Rauch [1], B. H. Lapizco-Encinas [2],
[1] Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
[2] Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA

Insulator-based dielectrophoresis (iDEP) employs arrays of electrically insulator posts in a microfluidic device to create dielectrophoretic forces that affect particle movement (Figure 1). The trapping performance of iDEP devices involves a careful balance between electrokinetics (EK) ... Mehr lesen

Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL Multiphysics® Software

D. Wijesinghe [1], K. Nawarathna [1],
[1] Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA

We have used COMSOL Multiphysics® software to design a micropipette for single -cell gene expression profiling. The micropipette design allows us to insert it into a single-cell to extract genes through dielectrophoresis. As dielectriphoretic force depends on the applied electric field ... Mehr lesen

Best Practices in EM Simulation in COMSOL Multiphysics®

M. Olsson [1]
[1] COMSOL AB, Stockholm, Sweden

This session addresses some common challenges in electromagnetic modeling and simulation. The introductory presentation will cover how to pick and choose between a large number of available formulations in three separate modules including the AC/DC Module, RF Module, and Wave Optics ... Mehr lesen

A Numerical Model of Electroporation in Bacteria

J. L. Moran [1], N. N. Dingari [1], C. R. Buie [1],
[1] Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Electroporation is a biotechnological technique which subjects cells to strong (~kV/cm), short (~ms) electric field pulses that open pores on the cells’ plasma membranes. Under the appropriate conditions, the pores mediate the passage of exogenous material into cells. If the pores ... Mehr lesen

COMSOL Multiphysics® Software Used as a Laplacian Potential Simulator for an Electrospray Propulsion System Extraction Region

S. Gallucci [1], P. Mirbod [1],
[1] Clarkson University, Potsdam, NY, USA

Electrospray propulsion is a contemporary type of thruster technology that electrostatically drives particles through an extractor grid without the need of a pump. The basis of this propulsion system is the coalescence of propellant into a Taylor cone and through a charged extraction ... Mehr lesen

Simulation of Sample Inhomogeneity in Microwave Impedance Microscopy

T. S. Jones [1], C. R. Pérez [1], J. J. Santiago-Avilés [1],
[1] University of Pennsylvania, Philadelphia, PA, USA

Microwave impedance microscopy (MIM) is a novel mode of atomic force microscopy that can measure topography and local electrical impedance simultaneously and with nanometer spatial resolution [1]. This technique is typically used qualitatively, identifying defects in nanodevices or ... Mehr lesen

Coupling Picosecond Terahertz Pulses to a Scanning Tunneling Microscope

P. H. Nguyen [1], C. Rathje [2], G. J. Hornig [1], V. Jelic [1], C. Ropers [2], F. A. Hegmann [1],
[1] University of Alberta, Edmonton, AB, Canada
[2] 4th Physical Institute, University of Göttingen, Göttingen, Germany

Probing ultrafast processes over subpicosecond and picosecond time scales provides fundamental insight into the nature of materials. We have experimentally demonstrated terahertz (THz)-pulse-induced tunneling in a scanning tunneling microscope (THz-STM) to image surfaces with ... Mehr lesen

Maximizing Wireless Power Transfer Using Ferrite Rods within Telemetric Devices for Rodents

B. M. Badr [1], R. Somogyi-Csizmazia [1], K. R. Delaney [1], N. Dechev [1],
[1] Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada

A number of medical and research applications require implantable devices to locally stimulate internal organs and communicate the internal vital signals to the outer world. Wireless power transfer (WPT) technique is used to supply power to these devices. The power is transferred ... Mehr lesen

Simulation of the Impedance Response of Materials with More Than One Electrical Path

R. A. Gerhardt [1], Y. Jin [1],
[1] Georgia Institute of Technology, Atlanta, GA, USA

Introduction Polycrystalline single phase materials often display electrical properties that are a function of their grain size. Impedance spectroscopy, an alternating current technique is ideal for detecting the presence of more than one current path and has been used for many years ... Mehr lesen