Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Comparison of an Analytical and Numerical Solution for the Landmine Detection Problem

M. Mattingly[1], K. McIlhany[2], and R. Malek-Madani[3]

[1]Applied Research Laboratory, The Pennsylvania State University, University Park, PA, USA
[2]Physics Department, United States Naval Academy, Annapolis, MD, USA
[3]Mathematics Department, United States Naval Academy, Annapolis, MD, USA

Acoustic landmine detection is accomplished using a loud speaker as an airborne source to generate low-frequency waves that enter the soil at a certain incident angle. At a specific frequency, the landmine will "vibrate" at resonance, imparting a certain velocity on the soil particles above it that is detected by a scanning Laser Doppler Vibrometer system. The ability to mathematically predict ...

Ultrasound Propagation in Viscoelastic Material Guides

Castaings, M.1, Predoi, M.V.2, Hosten, B.1 1 Laboratoire Mécanique Physique, Univ. Bordeaux 1, UMR CNRS 5469, Talence, France
2 Catedra de Mecanica, Universitatea Politehnica Bucuresti, Bucuresti, Romania

Wave propagation in elastic waveguides is a problem of constant interest from the last decades. Several numerical approaches exist. The most intuitive uses time-marching routines that solve the equations of dynamic equilibrium and supply displacements of the structure nodes as time functions. This procedure is usually time and memory consuming due to huge number of temporal iterations required ...

Numerical Shape Optimization of Photoacoustic Sample Cells: First Results

B. Baumann1, B. Kost1, M. Wolff1,2, H. Groninga2, T. Blöß1, and S. Knickrehm1
1Hamburg University of Applied Sciences, Hamburg, Germany
2PAS-Tech GmbH, Zarrentin, Germany

First results in the automatic shape optimization of a photoacoustic sample cell are described. The aim is to maximize the sensor’s signal strength. The approach considers all shapes that can be represented by a number of axis-symmetrical truncated cones which are connected in a continuous way. In addition, the cell is subjected to certain constraints (e.g. the laser beam is not blocked during ...

Using COMSOL to Support a Cost-Effective, Non-Destructive Evaluation Approach for Predicting Bolt Failure in Highway Bridges

A. Elyea, B. Doubek, G. Hubbard, and D. Ozevin
Department of Civil Engineering
University of Illinois at Chicago
Chicago, IL

The development of a quantitative nondestructive evaluation method, as an alternative to visual inspection, for inspecting pre-tensioned bolts in fracture critical bridges is presented. In order to understand the ultrasonic behavior of a wide variety of bolt geometries used in bridges, numerical models of nine different bolt geometries were developed. The numerical models included the ...

Structured Ultrasonic Metasurfaces

R. C. Thiagarajan
ATOA Scientific Technologies Private Limited
Bangalore, India

Ultrasonic acoustic waves usually encounter interfaces with significant impedance mismatch in practical medical or industrial imaging applications. A transparent interface can help to improve the performance of medical and industrial imaging and overall innovative applications. Similarly, a broadband total reflection interface can help to improve the architectural or transportation barrier ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]
[1]ACOUSTICS@MBD CONSULTANTS, LLC, Westborough, MA, USA

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such composites ...

Analysis of Sound Propagation in Lined Ducts by Means of a Finite Element Model

D. Borelli[1] and C. Schenone[1]
[1]DIPTEM, University of Genova, Genova, Italy

The present paper describes the results of a Finite Element Model used to analyze sound propagation in lined ducts. By means of a numerical model it was possible to predict the insertion loss inside rectangular lined ducts in a frequency range from 250 Hz to 4000 Hz. The model was validated by a comparison with experimental data obtained in accordance to ISO 11691 and ISO 7235 standards. The ...

Boundary Conditions for the Diffusion Equation Model in Room-acoustic Prediction

Y. Jing, and N. Xiang
Graduate program of Architectural Acoustics, School of Architecture, Rensselaer Polytechnic Institute, Troy, NY, USA

This note proposes a modified boundary condition for the diffusion equation model to predict the reverberation times and sound pressure distributions in enclosures.While previous diffusion equation models usually only have good performances for a certain range of absorption surfaces, the modified diffusion model yields more satisfactory results for both low and high absorption surfaces.An example ...

Linear Water Wave Propagation around Structures

L. Martinelli, and A. Lamberti
Universita di Bologna, Italy

Objective of this contribution is to show how to implement the Mild Slope Equations with COMSOL Multiphysics. These equations are commonly used to study the propagation of waves in harbors. Some interesting features are presented, namely the use of weak terms (used for the modelling of the source term); the evaluation of a smooth phase gradient from the complex dependent variable; a robust ...

FEM Simulation of Generation of Bulk Acoustic Waves and their Effects in SAW Devices

A.K. Namdeo[1], N. Ramakrishnan[2], and H.B. Nemade[1]
[1]Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Guwahati, India
[2]Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India

This paper presents finite element method (FEM) simulation study of the generation of bulk acoustic waves (BAWs) and their effect on the performance of surface acoustic wave (SAW) devices, using COMSOL Multiphysics. A SAW delay line structure using YZ-cut lithium niobate substrate is simulated. The radiation of the bulk waves in all angles into the interior of the substrate is analyzed. The bulk ...

Quick Search