Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Temperature Propagation during Cell Stacking Processes for Lithium-Ion Cells

G. Liebig [1], P. Bohn [2], L. Komsiyska [1], S. Vasić [1]
[1] NEXT ENERGY EWE-Forschungszentrum, Oldenburg, Germany
[2] AUDI AG, Ingolstadt, Germany

A thermo-physical 3D model of a commercial Li-ion battery was developed and validated. Visualization of the temperature distributions inside a Li-ion cell during cell stacking processes were simulated. Critical temperature levels depend on position, duration and intensity of the thermal stressing. Results show a maximum local temperature of 180 °C at the jelly roll after laser welding for 4 s ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance - new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in COMSOL 3.5a is extended by adding an energy balance and the temperature dependence of properties of ...

Cooling and Hardening during Injection Molding of Field Joint Coatings for Deep Sea Pipelines

L. Van Lokeren [1], R. Verhelle [1], S. Loulidi [1], H. Boyd [2], G. Ridolfi [2], G. Van Assche [1]
[1] Vrije Universiteit Brussel, Brussels, Belgium
[2] Heerema Marine Contractors, Leiden, The Netherlands

A multilayer polymer coating is applied to carbon steel pipelines installed in the sea to protect against corrosion and to insulate to maintain the temperature. For field joint coatings, both thermosets (like polyurethane) and semi-crystalline thermoplastics (like polypropylene) are commonly used. To predict the temperature and crystallinity or conversion of the polymer during the cooling ...

Primary Current Distribution Model for Electrochemical Etching of Silicon through a Circular Opening

A. Ivanov [1], U. Mescheder [1],
[1] Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany

Primary current distribution model for anodization of low-doped p-type silicon through a circular opening in frontside insulating mask is developed. The model is applied in two regimes of the process – pore formation and electropolishing – by definition of current density dependent functions of porosity and dissolution valence based on experimental results. As found also experimentally, ...

Modeling Galvanic Corrosion

E. Gutierrez-Miravete[1], M. Turner[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

Galvanic corrosion is encountered in marine applications because one often has dissimilar metal joints and seawater acts as an electrolyte. One metal acts predominantly as anode and undergoes material dissolution while the other acts predominantly as cathode and is the site where a cathodic reaction takes place. Assuming a stagnant electrolyte, the equation governing the distribution of ...

Simplified Multiphysics Model for All-Solid State Microbatteries

M.S. Nesro[1], I.M. Elfadel[1]
[1]Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE

Lithium microbatteries are replacing conventional power sources in many microsystems areas such as wireless sensors and biomedical monitors. In many of these applications, compact models of micro batteries are needed both at the microsystems design stage and at the real-time power management stage. These compact models are typically derived from physics-based discretized formulations. We have ...

Charge-Discharge Studies of Lithium Iron Phosphate Batteries

A. K. R. Paul [1], R. D. Pal [2],
[1] CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
[2] Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India

A lithium-ion battery comprises of two intercalating electrodes separated by a membrane, sandwiched between aluminum and copper current collecting plates. The battery performance depends upon several parameters and its operating conditions. In this work we developed a model for a lithium iron phosphate battery and validated our results with experimental charge-discharge curves. We however note ...

Computational Optimization of Battery Grid for Efficiency and Performance Improvement

V. Panneerselvam [1], R. C. Thiagarajan [1]
[1] ATOA Scientific Technologies Pvt Ltd, Bengaluru, India

Battery grids are critical system used in automobile, renewable energy, medical devices and mobile phones. Research efforts are directed to increase energy density, longevity and reduce the cost. This paper is related to computational optimisation of lead acid battery for efficiency and performance improvement. Battery grid is the precursor for the active material and current distribution in ...

Simulation of Production Processes using the Multiphysics Approach: The Electrochemical Machining Process

R. van Tijum
Dr.
Advanced Technology Center, Philips Consumer Lifestyle, Drachten, The Netherlands

Redmer van Tijum studied Applied Physics at the University of Groningen. In 2006, he received his PhD title on ‘Interface and surface roughness of polymer metal laminates’ in the field of Material Science at the University of Groningen. After that he became research and development engineer at Philips, where he focussed his attention on the improvement of production processes mainly ...