Quick Search

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Analysis of Electro-Thermal Hot Spot Formation in Li-Ion-Battery-Cells

W. Beckert[1], C. Freytag[1], T. Frölich[1], G. Fauser[1]
[1]Fraunhofer IKTS, Dresden, Germany

The presented model approach offers a computational efficient tool to analyze the influences of geometrical design details, material selection and operational conditions on the electro-thermal behavior of a full Li ion battery cell geometry. It considers typical aspects as anisotropic winding structure, electro-thermal coupling and nonlinear electrical characteristics for moderate computational ...

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

H. White[1], L. Luo[1]
[1]Department of Chemistry, University of Utah, Salt Lake City, UT, USA

A characteristic feature of nanochannels is that surface properties (e.g., electrical charge) play a more significant role in the transport of fluid and electrolyte. Two oppositely directed flows (electroosmotic flow and pressure-driven flow) determine the flow profile at the nanopore orifice as well as electrolyte distribution. Once there are two electrolyte solutions with different ...

Simplified Multiphysics Model for All-Solid State Microbatteries

M.S. Nesro[1], I.M. Elfadel[1]
[1]Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE

Lithium microbatteries are replacing conventional power sources in many microsystems areas such as wireless sensors and biomedical monitors. In many of these applications, compact models of micro batteries are needed both at the microsystems design stage and at the real-time power management stage. These compact models are typically derived from physics-based discretized formulations. We have ...

Modeling the Electroplating of Hexavalent Chromium

N. Obaid[1], R. Sivakumaran[1], J. Lui[1], A. Okunade[1]
[1]University of Waterloo, Waterloo, ON, Canada

This project modeled an industrial chromium plating process for automotive components. The process was modeled via the COMSOL Multiphysics® Electrodeposition Module. The simulation examined the effect of solution conductivity, electrode spacing, and anode height utilizing a factorial design approach. A sensitivity analysis was used to study the effect of these variables on the thickness value at ...

The Effect of Electrolyte Flow Slots in Tooling Electrodes on Workpiece Surface Finish in Electrochemical Machining

B. Bingham[1]
[1]Oregon State University, Corvallis, OR, USA

Electrochemical machining (ECM) uses electrolysis to precisely remove material at high rates. ECM has many advantages over conventional machining: no tool wear, no induced mechanical or thermal stresses, high removal rates virtually independent of material hardness or strength, and excellent surface finishes. However, challenges can arise during the design of the tooling electrode when ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance - new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Modeling Bioelectrochemical Systems for Waste Water Treatment and Bioenergy Recovery with COMSOL Multiphysics®

T. Oyetunde[1], D. Ofiteru[1], J. Rodriguez[1]
[1]Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates

Most conventional wastewater treatment processes are quite energy-intensive. Global wastewater production is increasing due to growth in population, industrialization, and urbanization, creating an urgent need for energy-efficient wastewater treatment technologies. Moreover, waste streams (industrial and domestic) have drawn renewed interest as resources for water, energy, and product recovery. ...

Modeling of the Material/Electrolyte Interface and the Electrical Current Generated During the Pulse Electrochemical Machining of Grey Cast Iron

O. Weber[1], A. Rebschläger[1], P. Steuer[1], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current and thus of the material removal behavior is ...

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in COMSOL 3.5a is extended by adding an energy balance and the temperature dependence of properties of ...