Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Simulating Organogenesis in COMSOL Multiphysics®: Parameter Optimization for PDE-based Models

D. Iber[1], D. Menshykau[2], P. Germann[2], L. Lermuzeaux[2,3]
[1]D-BSSE, ETH Zurich, Switzerland, SIB, Basel, Switzerland
[2]D-BSSE, ETH Zurich, Basel, Switzerland
[3]Department of Bioengineering, University of Nice-Sophia Antipolis, Nice, France

Morphogenesis is a tightly regulated process that has been studied for decades. Previously we developed data-based mechanistic models for a range of developmental processes with a view to integrate the available knowledge and to better understand the underlying regulatory logic. In our previous papers on simulating organogenesis in COMSOL Multiphysics® we discussed methods to efficiently solve ...

Flexible Numerical Platform for Electrical Impedance Tomography

A. Fouchard [1], S. Bonnet [1], L. Hervé [1], O. David [2],
[1] University Grenoble Alpes, CEA, LETI, MINATEC Campus, Grenoble, France
[2] Univesité Joseph Fourier, Grenoble Institute of Neuroscience, La Tronche, France

An implementation of the Electrical Impedance Tomography (EIT) forward problem in a generalist FEM package is presented. It fulfils the complete electrode model boundary conditions, combining current injection with contact impedance on a single boundary. Our implementation is benchmarked with the EIDORS FEM library. The Comsol Multiphysics environment proves consistent and provides a flexible ...

Elucidating the Mechanism Governing Particle Alignment and Movement by DEP

G. Zhang [1], Y. Zhao [1], J. Brcka [2], J. Faguet [2],
[1] Clemson University, Clemson, SC, USA
[2] Tokyo Electron U.S. Holdings, Inc., Austin, TX, USA

We have simulated alignment and movement of multiple particles under Dielectrophoresis (DEP) using the Particle Tracing Module in COMSOL Multiphysics® software with particle-particle interaction taken into consideration. We are able to do efficient modeling for both 2D and 3D cases. With this work, we are able to shed important insights into the process of pearl chain formation, antenna-like ...

Numerical Study on Mechanical Properties of Stents with Different Materials during Stent Deployment with Balloon Expansion.

P. Ghosh[1], K. DasGupta[1], D. Nag[2], and A. Chanda[1]
[1]School of Bio Science & Engineering, Jadavpur University, Kolkata, West Bengal, India
[2]Mechanical Engineering Department, Jadavpur University, Kolkata, West Bengal, India

The main reason for stent implantation is to provide mechanical support to the arterial wall. So it is important to consider the different mechanical properties of different stent materials while studying the stent implant’s efficacy. The present study gives a comparative overview of mechanical aspects of different stent materials which are most commonly used in angioplasty. Deformation ...

Nusselt, Rayleigh, Grashof, and Prandtl: Direct Calculation of a User-Defined Convective Heat Flux

J. F. Hansen [1],
[1] Thoratec Corporation, CA, USA

When an electronic device is worn for extended periods, possibly in direct contact with human skin, heat must be safely transferred away from the device, without exceeding standards and regulatory temperature limits on the skin and on the exposed surfaces of the device. Heat transfer is dominated by convective heat transfer to the surrounding air (possibly trapped air under clothing), and by ...

MEMS Based Sensor for Blood Group Investigation

M. Kaushik [1], S. Katti [1], V. Saradesai [1], P. Naragund [1], P. Vidhyashree [1], A. K. V. Nandi [1]
[1] B.V. Bhoomaraddi College of Engineering and Technology, Hubli, India

This article describes the design of MEMS based cantilever structure intended for determination of blood group and it is compared with manual method. Cantilever structure design has a sensing layer and when a blood sample comes in contact with this, results in coagulation. The surface tension in turn occurs due to chemical and biological reactions of antigen and antibodies resulting in ...

COMSOL Multiphysics-Based Exploratory Insulin Secretion Model for Isolated Pancreatic Islets

P. Buchwald
University of Miami, Miami, FL, USA

Insulin released by the beta-cells of pancreatic islets is the main regulator of glucose homeostasis, hence, insulin secretion models are of considerable interest for many possible applications. Building on our previous oxygen consumption and cell viability model for avascular islets of Langerhans, we developed an exploratory insulin secretion model that couples the hormone production rate to ...

Using COMSOL Multiphysics for Modeling of Musculoskeletal Biomechanics

R. L. Spilker
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, New York, USA

In this presentation, we study the modeling of physiology and muscoskeletal biomechanics using COMSOL. The outline for the presentation is in particular: Why is COMSOL particularly powerful for modeling physiology? Modeling soft tissues like cartilage Optimization to determine soft tissue properties Modeling of moving loads in the TMJ Robust 3D models from imaging data Model of primary ...

Modeling Deep-Bed Grain Drying Using COMSOL Multiphysics®

J.G. Pieters[1], R. ElGamal[1], F. Ronsse[1]
[1]Faculty of Bioscience Engineering, Department of Biosystems Engineering, Ghent, Belgium

CFD simulations were carried out to predict the convective heat and mass transfer coefficients in the rice bed, and correlations were developed for the convective heat and mass transfer coefficients as a function of drying air flow rate. The developed correlations were used to extend the model developed by ElGamal et al. (2013) for thin-layer rice drying to volumetric heat and mass transfer in a ...

Alternate Glucometer Bio-sensor Model based on Ultrasonic MEMS Transceivers

P. Pattnaik[1], S. K. Kamilla [1], Debi Prasad Das[2]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER),Siksha ‘O’ Anushandhan University, Bhubaneswar-751030, Odisha,India
[2]Process Engineering and Instrumentation Cell,Institute of Minerals and Materials Technology (IMMT),Bhubaneswar, Odisha,India

To prevent further complications in diabetes, proper management of blood glucose levels is essential. By using ultrasonic transceivers (both transmit and receive) the glucose level of human blood can be determined. By using this ultrasonic technique miniaturized sensors for non-invasive monitoring blood glucose levels. In this paper Barium Titanate (BT) thin film was used as a transmitter and ...