Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

Chemical Reaction Engineeringx

Modeling of a Biogas Steam Reforming Reactor for Solid Oxide Fuel Cell Systems

F. Cipitì[1]
[1]CNR-ITAE, Institute of Advanced Technologies for Energy, Messina, Italy

A biogas steam reforming reactor has been developed in order to be integrated into a proof-of-concept SOFC system, able to operate with biogas produced in an industrial waste water treatment unit. A mathematical model, aimed at describing the performance of the reactor, has been ... Mehr lesen

Numerical Modeling and Performance Optimization Study of a Dehumidification Process in Nuclear Waste Storage

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

One of the main parameters to consider during the nuclear waste storage design phase is the drum corrosion risk. The humid-air corrosion models available in literature predict that, for carbon steel, the phenomena start to become appreciable for relative humidity (RH) values close to ... Mehr lesen

Simulation of Reactive Transport in Porous Media: A Benchmark for a COMSOL-PHREEQC-Interface

D. Müller[1], H. Francke[1], G. Blöcher[1], H. Shao[2]
[1]Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ, Potsdam, Brandenburg, Germany
[2]Helmholtz-Zentrum für Umweltforschung UFZ, Leipzig, Saxony, Germany

The reactive transport simulation interface COMSOL-PHREEQC, developed by Wissmeier & Barry (2011), provides a MATLAB®-based coupling interface to combine COMSOL Multiphysics® for flow and heat transport simulations and PHREEQC as a geochemical batch reaction simulator. The ... Mehr lesen

Water Quality Modeling of Drinking Water Storage Reservoir Noardburgum

N. Wolthek[1]
[1]Vitens NV, Zwolle, The Netherlands

The water storage reservoir at the WTP Noardburgum is used to even out demand and supply and ensure a stable drinking water production capacity. At the moment the rectangular reservoir has a single pipeline which serves as an inlet during the fill cycle and as an outlet during the draw ... Mehr lesen

Simulation of Gravitational Instability During CO2 Absorption in a NaHCO3/Na2CO3 Solution

C. Wylock[1], A. Rednikov[1], B. Haut[1], P. Colinet[1]
[1]Université Libre de Bruxelles (ULB), Transfers, Interfaces and Processes (TIPs), Brussels, Belgium

This work deals with the modeling and the numerical simulation of the CO2 absorption, coupled with a chemical reaction, in an initially quiescent aqueous solution of sodium carbonate (Na2CO3) and bicarbonate (NaHCO3), inside a Hele-Shaw cell. In our Hele-Shaw cell, the liquid fills ... Mehr lesen

Simulation of Gas/Liquid Membrane Contactor with COMSOL Multiphysics®

N. Ghasem[1], M. Al-Marzouqi[1], N. Abdul Rahim[1]
[1]UAE University, Al-Ain, United Arab Emirates

A comprehensive mathematical model that includes mass and heat transfer was developed for the transport of gas mixture of carbon dioxide and methane through hollow fiber membrane (HFM) contactor. COMSOL Multiphysics® was used in solving the set of partial, ordinary and algebraic ... Mehr lesen

Oxidation of Titanium Particles during Cold Gas Dynamic Spraying

A. Malachowska[1], L. Pawlowski [1], A. Ambroziak [2], M. Winnicki [2], P. Sokolowski[2]
[1]University of Limoges, Limoges, France
[2]Wroclaw University of Technology, Wroclaw, Poland

This paper studies oxide forming on titanium, during cold gas dynamic spraying with air. This is a quite new spraying method, which can be used to spray material having high affinity for oxygen. The model allows for the diffusion of oxygen through the oxide layer, reaction on the oxide ... Mehr lesen

Modeling of Turbulent Combustion in COMSOL Multiphysics®

D. Lahaye[1], L. Cheng[2]
[1]DIAM, EEMCS Faculty, TU Delft, The Netherlands
[2]Tsinghua University, Beijing, China

In the production of high quality materials by a heat treatment, it is indispensable to accurately predict the temperature inside the furnaces being employed. In this work we develop a turbulent combustion model for the heat being released by gas burners inside a shaft kiln. Turbulent ... Mehr lesen

FEM Based Studies of a Mg/Al Hybrid Component Joint Regarding Corrosion Prediction

D. Höche[1]
[1]Helmholtz-Zentrum Geesthacht, Germany

The model can be utilized for a virtual design of a hybrid joint interms of corrosion prevention. Structures can be optimized by the simulations by tailoring the parameters to get the most suitable result towards a Computer-Aided Engineering CAE regarding corrosion protection. This kind ... Mehr lesen

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models ... Mehr lesen