Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Geometric Optimization of Micromixers

M. Jain[1], A. Rao[1], K. Nandakumar[1]
[1]Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

The performance of a homogeneous T-mixer can be enhanced significantly by the stimulation of secondary/ transverse flows in the microchannel. Various mixing mechanisms are reported for enhancing micromixing performance such as grooves at the channel bottom, heterogeneous charge patterns etc. Most of these micromixers are studied with respect to planar geometric parameters such as groove width, ...

Transport of Cadmium through Molten Salt to Argon Cover Gas in Electrorefiner

K.Revathy[1], S. Agarwal[1], B. Muralidharan[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Electro refining is one of the important step in the Pyro processing nuclear spent fuel with molten salt. The electro refiner is a process vessel consists of anode ,cathodes and stirrers and ultra –high pure argon gas is provided at the top for inert atmosphere and at the bottom a cadmium layer is provided. The vapor pressure of the cadmium is high at the operating temperature, the cadmium vapor ...

Benchmark Model: Natural Convection of Water-Aluminum Oxide Nanofluids in a Square Cavity

M. Z. Saghir [1], A. Ahadi [1], A. A. Mohamad [2],
[1] Department of Mechanical Engineering, Ryerson University, Toronto, ON, Canada
[2] Department of Mechanical Engineering, University of Calgary, Calgary, AB, Canada

Nanofluids is a new class of fluid consisting of particles in a liquid. Different base liquid has been proposed and the most common one is water. The concentration of these particles can range from 0.1% to 5% or greater. Different numerical models have been proposed to solve this interesting problem. Some scheme assumed the fluid as a single fluid and other assumed as a two phase system ...

A Research of Electro-thermal Coupling Model for Lithium-ion Battery with Multiphysics in COMSOL Multiphysics®

戴海峰 [1], 许阳 [1], 朱建功 [1],
[1] 同济大学,上海,中国

A new method is proposed to study battery thermal behavior under nature convection condition, especially focusing on temperature rising and inhomogeneity of battery. Using porous electrode theory, an electrochemical and homogenization heat source thermal coupling model and an electrochemical-distributed heat source thermal coupling model are established. In the meanwhile, to improve inhomogenity ...

Simulation of Thermal Elastohydrodynamic Lubricated (TEHL) Gear Contacts

T. Lohner [1], A. Ziegltrum [1], K. Stahl [1],
[1] Gear Research Centre (FZG), Technical University of Munich (TUM), Garching, Germany

Thermal elastohydrodynamic lubricated (TEHL) contacts occur very frequently in drive technology and thus in gear drives. In this presentation, the implementation of a finite element based TEHL simulation approach for gear contacts in COMSOL Multiphysics® software is shown. The physically based simulation approach used is different to most of the existing TEHL simulations and is required to ...

An Analysis of Heat Conduction with Change of Phase with Application to the Solidification of Copper

J. Michalski[1], and E. Gutirrez-Miravete[2]
[1]Hamilton-Sundstrand
[2]Rensselaer at Hartford, Hartford, Connecticut, US

The goal of this study was to determine the possibility of using the finite element in COMSOL Multiphysics program to obtain a high accuracy solution to a moving boundary problem, specifically, the solidification of copper. A one-dimensional geometry in Cartesian coordinates was used to investigate the solidification of initially liquid copper from a chilled wall maintained at fixed temperature. ...

Deformation Behavior Of A Liquid Droplet Impacting A Solid Surface

S. Oukach[1], M. Elganaoui[1], B. Pateyron[1], and H. Hamdi[2]
[1]Laboratoire des Sciences des Procèdes Céramiques et de Traitements de Surface SPCTS, Limoges, France
[2]Laboratoire de Mécanique des Fluides et Energétique LMFE, Marrakech, Morocco

The quality of coatings obtained by means of thermal spraying depends strongly on the mechanism of the interaction between the molten droplets and the surface to be covered. The aim of the present study is to simulate the impact of a droplet onto a substrate, in order to have a good understanding of the dynamics of droplets impact. In this study, the process of droplet spreading is described; ...

Pore-Scale Simulation of Two-Phase Flow with Heat Transfer Through Dual-Permeability Porous Medium

H.A. Akhlaghi Amiri[1], A.A. Hamouda[1]
[1]University of Stavanger, Stavanger, Rogaland, Norway

This paper addresses one of the major challenges in water-flooded oil reservoirs, which is early water breakthrough due to the presence of high permeable layers in the media. COMSOL Multiphysics is used to model two phase (water and oil) flow in dual-permeability porous medium at micro-scales. The heat transfer module is coupled with the laminar two-phase flow interface, because temperature ...

Comparative Numerical Studies of Scramjet Inlet Performance Using k-? Turbulence Model with Adaptive Grids

V. Gopal[1], R. Kolluru[1]
[1]BMS College of Engineering, Bangalore, Karnataka, India

Scramjet inlet design remains as a key aspect for hypersonic flight. To assess the inlet design, the performance parameters namely; air-capture ratio, total pressure efficiency, inlet drag coefficient, and kinetic energy efficiency are evaluated and analysed. In the current study comparison of performance parameters is carried out by performing numerical computation of 2-D turbulent flow field ...

3D Modelling of Flow Dynamics in Packed Beds of Low Aspect Ratio - new

F. Alzahrani[1], F. Aiouache[1]
[1]Engineering Department, Lancaster University, Lancaster, UK

This work used the 3D CFD modeling to investigate non-uniform deactivation in packed bed reactors of low aspect ratios under steady state and dynamic operations. In order to explore the effects of condition of instability on local deactivation, detailed knowledge of flow dynamics (i.e. local structure of the packed bed, pressure drops and interstitial flow in the void space), heat and mass rate ...