Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Development of a RheoDSC, an Instrument for Simultaneous Rheological and Calorimetric Measurements

L. Van Lokeren [1], R. Verhelle [1], C. Block [1], P. Van Puyvelde [2], G. Van Assche [1]
[1] Vrije Universiteit Brussel, Brussels, Belgium
[2] Catholic University of Leuven, Leuven, Belgium

Transformations in polymers, such as polymerisation, melting/crystallization, and phase separation/remixing, are associated with changes in both rheological and thermal properties. To permit simultaneous calorimetric and rheometric measurements, the RheoDSC was developed. The RheoDSC combines two commercial instruments, a TA Instruments Q2000 DSC and a TA Instruments AR-G2 dynamic rheometer. A ...

Numerical Simulation of Granular Solids’ Behaviour: Interaction with Gas

A. Zugliano[1], R. Artoni[2], A. Santomaso[2], and A. Primavera[1]
[1]Danieli & C. Officine Meccaniche S.p.a., Buttrio, UD, Italy
[2]DIPIC, Università di Padova, Padova, Italy

In previous works a dissipative hydrodynamic model was used to simulate the behavior of a dense granular solid flowing through silos with simple geometries or with internal devices, showing good agreement with experimental results. That model has been upgraded taking into account the interaction between the solid itself and a nonreactive gaseous stream flowing countercurrent through it. This ...

Using CFD to Predict the Performance of Innovative Wind Power Generators

D. Allaei[1]
[1]Sheer Wind Inc., Chaska, MN, USA

INVELOX is an innovative wind power generation system as shown in Figure 1. It is comprised of a wind capturing system that accelerates and delivers high kinetic energy wind to a power conversion system placed in the Venturi section of the INVELOX. The objective of this project is to build a full scale model to verify laboratory and field our test data and to utilize the validated model as an ...

Comparative Numerical Studies of Scramjet Inlet Performance Using k-? Turbulence Model with Adaptive Grids

V. Gopal[1], R. Kolluru[1]
[1]BMS College of Engineering, Bangalore, Karnataka, India

Scramjet inlet design remains as a key aspect for hypersonic flight. To assess the inlet design, the performance parameters namely; air-capture ratio, total pressure efficiency, inlet drag coefficient, and kinetic energy efficiency are evaluated and analysed. In the current study comparison of performance parameters is carried out by performing numerical computation of 2-D turbulent flow field ...

Performance Evaluation of the 19th Century Clipper Ship Cutty Sark: A Comparative Study - new

C. Tonry[1], M. Patel[1], C. Bailey[1], W. Davies[1], J. Harrap[1], E. Kentley[1], P. Mason[1]
[1]University of Greenwich, London, UK

The Cutty Sark, built in 1869 in Dumbarton, is the last intact composite tea clipper ship [1]. One of the last tea clippers built she took part in the tea races back from China. These races caught the public imagination of the day and were widely reported in newspapers [2]. They developed from a desire for ‘fresh’ tea and the first ship to return with the new season’s tea could charge a higher ...

Modelling Thermal Time-of-Flight Sensor for Flow Velocity Measurement

O. Ecin[1], E. Engelien[2], M. Malek[2], R. Viga[2], B. Hosticka[1], and A. Grabmaier[2]

[1]Institut of Mikroelektronische Systeme, University Duisburg-Essen, Duisburg, Germany
[2]Institut of Elektronische Bauelemente und Schaltungen, University Duisburg-Essen, Duisburg, Germany

This communication reports on a numeric fluid dynamics simulation on a pipe flow model. The basic background is to determine the velocity of a flowing fluid in a pipe by using the Thermal Time-Of-Flight (TTOF) method on water. The visualization of the temperature and velocity distribution in the pipe model is being carried out in order to enable proper design and optimization of the TTOF sensor. ...

Using a Level-Set Model to Estimate Dwell Time in a Vacuum Dewatering Process for Paper

K. Rezk[1]
[1]Department of Energy, Environmental and Building Technology, Karlstad University, Kronoparken, Sweden

Water removal during paper manufacturing is an intensive energy process. The dewatering process generally consists of four stages in which the first three stages, water is removed mechanically through vacuum pulses and pressing.The fourth stage involve thermal drying. The vacuum dewatering process has been considered in this work. A laminar level-set method has been applied in order to capture ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

Simulation Tests of the Constitutive Equation of a Nonlinear Viscoelastic Fluid

A. Czirják [1], Z. Kőkuti [1], G. Tóth-Molnár [1], G. Szabó [1], P. Ailer [2], L. Palkovics [2]
[1] University of Szeged, Szeged, Hungary
[2] Kecskemét College, Kecskemét, Hungary

The determination of the constitutive equation of a nonlinear viscoelastic fluid is a challenging task, especially if a space-dependent equation is needed [1]. In this contribution, we present simulations of certain rheometry tests of a high-viscosity nonlinear viscoelastic fluid with a rotational rheometer [2]. We compare the measured values with the computed values of a few selected ...


徐佩锋 [1][2], 杨宁 [1],
[1] 江苏大学,镇江,江苏,中国
[2] 江苏农林职业技术学院,句容,江苏,中国

在 COMSOL Multiphysics® 中建立了平板膜组件模型,利用自由—多孔介质流和稀物质传递接口,通过对硅颗粒粒径和料液流速等操作参数及相互约束关系的设置,考察对渗透通量、膜表面处浓度等的影响,对硅颗粒悬浮液平板膜过滤中的浓差极化过程和膜组件的工作性能进行全面的仿真分析。并利用 COMSOL 中的函数、参数化扫描等后处理方式,实现了对仿真结果的可视化输出。仿真结果与实验数据较为一致 ...