Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Performance Evaluation of the 19th Century Clipper Ship Cutty Sark: A Comparative Study - new

C. Tonry[1], M. Patel[1], C. Bailey[1], W. Davies[1], J. Harrap[1], E. Kentley[1], P. Mason[1]
[1]University of Greenwich, London, UK

The Cutty Sark, built in 1869 in Dumbarton, is the last intact composite tea clipper ship [1]. One of the last tea clippers built she took part in the tea races back from China. These races caught the public imagination of the day and were widely reported in newspapers [2]. They developed from a desire for ‘fresh’ tea and the first ship to return with the new season’s tea could charge a higher ...

Simplified CFD Modeling of Air Pollution Reduction by Means of Greenery in Urban Canyons

S. Lazzari [1], K. Perini [1], E. R. di Schio [2], E. Roccotiello [3],
[1] University of Genova, Dept. of Sciences for Architecture, Genova, Italy
[2] University of Bologna, Dept. of Industrial Engineering, Bologna, Italy
[3] University of Genova, Dept. of Sciences of Earth, Environment and Life, Genova, Italy

As known, air quality in urban areas is dramatically affected in particular by the noteworthy presence of respirable suspended particulate matter (such as PM2.5), nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC), which are mainly due to traffic-induced emissions. On the other hand, it is also known that vegetation can help restoring the environmental quality of dense urban areas ...

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the influence of a steady magnetic field on partial penetration keyhole laser beam welding of aluminum. Three-dimensional ...

Wind Flow Modeling of Area Surrounding the Case Western Reserve University Wind Turbine

M. Fernandes[1], D. Matthiesen[1]
[1]Case Western Reserve University, Cleveland, OH, USA

The CWRU Turbine is a research turbine located in a urban campus in Cleveland, Ohio. This location may create turbulence, resulting in a possible loss in energy generation. This research attempts to answers the question of whether the wind flow is affected by the buildings or not. The surrounding buildings, which vary in height from 20 to 40 meters, may affect the wind patterns at the hub ...

Hydrodynamic and Thermal Modeling in a Deep Geothermal Aquifer, Faulted Sedimentary Basin, France

E. Malcuit[1], A.L. Gille[1]
[1]CFG Services, Orléans, France

Within projects of geothermal energy, we need hydrodynamic and thermal modeling to forecast the impacts of geothermal deep wells on existing wells. In case of pumping and reinjection of the geothermal fluid in a deep groundwater reservoir, located in a sedimentary basin with lateral and vertical lithology variations and major faults, it is fundamental to understand the behaviour of the ...

Increasing Heat Transfer in Microchannels with Surface Acoustic Waves - new

S. Berry[1]
[1]Massachusetts Institute of Technology: Lincoln Laboratory, Lexington, MA, USA

In this numerical study, surface acoustic waves (SAWs) are evaluated as a potential disruptive flow technology for enhancing heat transfer in microchannels. Using COMSOL Multiphysics® software, the physics governing acoustics, single-phase-fluid flow and heat transfer are coupled. The results show that acoustic streaming can disrupt the bulk fluid flow, creating rotating vortices within the ...

Transient Model of a Fluorine Electrolysis Cell

J. Vukasin [1], I. Crassous [1], B. Morel [1], J. Sanchez-Marcano [2], P. Namy [3]
[1] HRP, AREVA NC, France
[2] Institut Européen des Membranes - CNRS, France
[3] Simtec, France

In the nuclear fuel cycle, fluorine is produced by the electrolysis of the molten salt KF-2HF. It is a complex process to study since hydrofluoric acid and fluorine are hazardous and highly corrosive. A 3D-model of a lab-scale fluorine electrolysis cell has been developed to increase our understanding of this process, using the electric currents and the bubbly flow interfaces to simulate the ...

Control the Poly-Dispersed Droplet Breakup Mode in a Droplet-based Microfluidic Device by External Electric Field

Y. Li [1], K. Nandakumar [1], M. Jain [1],
[1] Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

Droplet–based microfluidics has received special research attentions in last two decades due to its superior control over fluid flow as well as other unique advantages[1]. By introducing two immiscible fluids into microfluidic systems, the reagent fluid is encapsulated inside discrete droplets or slugs of nanoliter volume [2]. Interestingly, two breakup modes, termed as “mono-dispersed” and ...

Implementation of a Thermo-Hydrodynamic Model to Predict the Morton Effect

M. Antonini [1], D. Fausti [1], M. Mor [1],
[1] PoliBrixia s.r.l., Brescia, Italy

In this paper, the "Morton Effect" is analyzed. This phenomenon is a particular kind of rotor instability due to non-uniform journal bearing heating. In this paper, an overview of the previous works has been done. After this preliminary study, a specific approach suggested by the literature has been chosen and analyzed. A thermal model, a rotor dynamic model and a stability criterion have been ...

Modeling Fluid-Structure Interaction in a Pressure-Controlled Current-Limiting Valve

N. Mügge [1], A. Waschke [1], L. Fromme [1], M. Petry [1],
[1] Bielefeld University of Applied Sciences, Department of Engineering Sciences and Mathematics, Bielefeld, Germany

This assignment deals with the modeling of a pressure controlled current-limiting valve. For this purpose the CAE-Software COMSOL Multiphysics® is used. Current-limiting valves are used as a measure of safety in many hydraulic applications. They are deployed in cases of a high decrease in pressure due to a burst pipe or leaks. The chief aim of this project is to find a beneficial modeling ...