Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

Computational Fluid Dynamicsx

Electrophoretic Focusing and Navigation for Intranasal Target Drug Delivery

X. Si[1]
[1]Calvin College, Grand Rapids, MI, USA

Direct nose-to-brain drug delivery circumvents the blood-brain-barrier and has multiple advantages over intravenous delivery. However, its application is limited by the extremely low delivery efficiency to the olfactory region. This study evaluated the feasibility of targeted drug ... Mehr lesen

Modeling Inertial Focusing in Straight and Curved Microfluidic Channels

J. Martel[1], N. Elabbasi[2], D. Quinn[2], J. Bergstrom[2], M. Toner[1]
[1]BioMEMS Resource Center, Massachusetts General Hospital, Boston, MA, USA
[2]Veryst Engineering, Needham, MA, USA

Inertial focusing is a promising microfluidic technique for separating and concentrating cells of interest, processes routinely utilized in many medical procedures. This phenomenon is characterized by suspended particles in a flow spontaneously migrating across streamlines to equilibrium ... Mehr lesen

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent ... Mehr lesen

Computational Fluid Dynamics for Microreactors Used in Catalytic Oxidation of Propane

S. Odiba[1], M. Olea[1], S. Hodgson[1], A. Adgar[1]
[1]Teesside University, School of Science and Engineering, Middlesbrough, United Kingdom

This research deals with the design of suitable microreactors for the catalytic oxidation of volatile organic compound (VOCs), using propane as a model molecule. The microreactor considered consists of eleven parallel channels, in which an Au/Cr/γ-Al2O3-catalyzed combustion reaction ... Mehr lesen

SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing

I. Mantilla[1], S. De Vicente[2]
[1]National University of Engineering, Lima, Perú
[2]Polytechnic University of Madrid, Madrid, Spain

We formulate a new mathematical model of gas-solids mixing hydrodynamic flow [1] in a combustion chamber with a fluid bed system used in the combustion of mineral coal waste. This model in study is called Model Gas-Solids Mixing and it is constructed by averaging the conservation ... Mehr lesen

Application of COMSOL Multiphysics® Pipe Flow Module to Develop a High Flux Isotope Reactor (HFIR) System Loop Model

P. K. Jain[1], D. Wang[1], J. D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA

Oak Ridge National Laboratory’s High Flux Isotope Reactor (HFIR) is the highest flux reactor-based source of neutrons for research in the United States. Thermal and cold neutrons produced by HFIR are used to study physics, chemistry, material science, engineering, and biology. Currently, ... Mehr lesen

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL Multiphysics®

J. Knox[1], R. Coker[1], R. Cummings[1], C. Gomez[1], G. Schunk[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

Some NASA efforts are focused on improving current systems that utilize fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. For the bulk ... Mehr lesen

Coupled PDEs with Initial Solution from Data in COMSOL Multiphysics®

M. K. Gobbert[1], X. Huang[1], S. Khuvis[1], S. Askarian[1], B. E. Peercy[1]
[1]University of Maryland - Baltimore County, Baltimore, MD, USA

This paper presents information on techniques needed in COMSOL Multiphysics® to enable computational studies of coupled systems of PDEs for time-dependent non-linear problems. Furthermore, we demonstrate how to use data files as input for initial conditions. To illustrate the techniques, ... Mehr lesen

Numerical Study of the Controlled Droplet Breakup by Static Electric Fields inside a Microfluidic Flow-focusing Device

Y. Li[1], K. Nandakumar[1], M. Jain[1]
[1]Louisiana State Univeristy, Baton Rouge, LA, USA

Conventional passive microfluidic flow-focusing devices confront difficulties in controlling droplet sizes in dripping regime especially when the dispersed phase has a large viscosity. It is reported that external electric field can be used to manipulate the droplet breakup. In the ... Mehr lesen

Development of a New Blade Profile for a Vertical Axis Wind Turbine

S. Yoshioka[1]
[1]Ritsumeikan University, Shiga, Japan

The vertical axis wind turbine design depicted in (Fig.1) is widely considered a wind turbine of a wind power generation system because it can be easily miniaturized, it generates low noise, and it rotates regardless of wind direction. The vertical axis wind turbine has, however, low ... Mehr lesen