Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

3-D Multiphysics Modeling of a Producing Hydrocarbon Field

McKenna, J.R.1, Blackwell, D.D.2
1 U.S. Army Engineer Research & Development Center, Geotechnical & Structures Laboratory, Vicksburg, Mississippi
2 Department of Geological Sciences, Southern Methodist University, Dallas, Texas

Thermal anomalies indicating elevated temperatures often are present in producing hydrocarbon fields. This paper discusses precision temperature logs obtained over a salt dome in the Bayou Bleu hydrocarbon field in southwest Lousiana, and presents a 3-D thermal-fluid model of the dome constrained by these types of logs. The numerical model in which both an enhanced thermal conductivity ...

Using COMSOL for the Transport Modelling of Some Special Cases in a Bentonite Buffer in a Final Repository for Spent Nuclear Fuel

M. Olin[1], V-M. Pulkkanen[1], A. Seppälä[1], T. Saario[1], A. Itälä[1], M. Tanhua-Tyrkkö[1], and M. Liukkonen[1]

[1]VTT, Technical Research Centre of Finland, Espoo, Finland

The bentonite barrier is an essential part of a safe spent fuel repository in granitic bedrock. In this work COMSOL Multiphysics® is used in modelling the Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) phenomena and processes taking place in a bentonite buffer. Special interest lies in systems in which the density of bentonite or bentonite pore water varies. Typically, variation ...

The Effect of the Disintegration of Chemical Stratification on the Time-dependent Behavior of the Earth’s Mantle

A. Galsa, and M. Herein
Eötvös University
Budapest, Hungary

Based on recent results from seismology, geochemistry etc. the distinct chemical character of the D’’ layer (lowest part of the mantle around the Earth’s core) has appeared unequivocally. Numerical calculations have been carried out to investigate the effect of the disintegration, mixing and homogenization of the dense D’’ on the time-dependent behavior of mantle convection. A ...

Non Linear Mechanical and Poromechanical Analyses: Comparison with Analytical Solutions

M. Souley, and A. Thoraval
Ecole des Mines
Parc de Saurupt, France

The long-term behaviour of the underground excavations is a social and economic challenge particularly in the contexts of post-mining or radioactive waste storage. Numerical modelings are currently used to understand and forecast the complex behaviour of rock mass around the underground cavities. In order to accurately perform these multiphysics modelings at high space and time scales, it is ...

Earth Pressure as a Boundary Condition to Bridge Piers and Abutments

M. Quinn[1], D. Whitlow[1], O.D.S. Taylor[1], M.H. McKenna[1]
[1] Engineer Resource and Development Center, United States Army Corps of Engineers, Vicksburg, MS, USA

Bridge piers and abutments makeup the bridge substructure and transmit loads from the superstructure to the bridge foundation material (Figure 1). The bridge abutment serves three purposes: to provide vertical support to the bridge superstructure where the bridge ends, to connect the bridge with the approach roadway, and to retain roadway base materials. There are several types of abutment ...

Building a Complex Geological Model Using Parametric Surfaces

S. Hoyer[1], M. Bottig[1], F. Zekiri[1], G. Götzl[1], A.K. Brüstle[1], G. Schubert[1], A. Nador[2]
[1]Geological survey of Austria, Vienna, Austria
[2]Geological Institute of Hungary, Budapest, Hungary

Temperature measurements of the subsurface are available due to hydrocarbon exploration in the project area, where the average drilling depth is about 2-4 km and the deepest well reaches about 8.5 km. Since the data is heavily uneven distributed, standard interpolation techniques did not deliver satisfying results. This is why numerical modeling was applied to assess the thermal regime of the ...

Estimation of Volcanic Deformation Source Parameters Through Optimization of Geodetic Data at Cotopaxi Volcano, Ecuador - new

J. Hickey[1], J. Gottsmann[1], P. Mothes[2]
[1]University of Bristol, Bristol, UK
[2]Instituto Geofísico, Escuela Politécnica Nacional, Quito, Ecuador

Volcanic eruptions are often preceded by periods of unrest, where the behavior of the volcano deviates from a background level towards one of increasing concern [1]. Understanding what causes and contributes to unrest is a key challenge in volcanology today, influencing risk mitigation and hazard forecasting. Deformation of the volcanic edifice is one such indicator of unrest owing to a ...

2-Dimensional Incompressible and Compressible Mantle Convection - new

Changyeol Lee[1]
[1]Faculty of Earth and Environmental Sciences, Chonnam National University, Gwangju, Republic of Korea

COMSOL Multiphysics® software has been used in computational geodynamics for years. Because very high pressure in the mantle even significantly compressed the mantle up to ~40%, it is crucial to consider the mantle compressibility in computational geodynamics. COMSOL Multiphysics allows consideration of mantle compressibility using the CFD Module and I benchmarked COMSOL Multiphysics using ...

Numerical Modeling of the Near-Subsurface Temperature Distributions in the Presence of Time Varying Air Temperature in the Boundary Condition and Space Varying Temperature for the Initial Condition - new

M. Ravi[1], D. V. Ramana[1], R. N. Singh[1]
[1]CSIR - National Geophysical Research Institute, Hyderabad, Telangana, India

The subsurface thermal structure in presence of groundwater recharge/discharge has been obtained by applying the Robin type boundary condition at the earth’s surface. The Robin type boundary condition involves the effect air temperatures at the surface which are taken as exponentially varying with time and the initial condition which is taken as exponential function of depth. The numerical ...

Hydrodynamics of Lake Victoria: Vertically Integrated Flow Models in COMSOL Multiphysics® Software - new

S. Paul[1], R. Thunvik[1], D. D. Walakira[2], J. Mango[2], J. Oppelstrup[3], R. Wait[4]
[1]The Royal Institute of Technology, Stockholm, Sweden
[2]Makerere University, Kampala, Uganda
[3]COMSOL AB, Stockholm, Sweden
[4]Uppsala University, Uppsala, Sweden

Lake Victoria is the largest tropical lake in the world and is very important for environment and economy in East Africa. The hydrodynamic processes in the shallow (40-80 m deep) water system are unique due to its location at the equator which makes Coriolis effects noticeable also for vertical transport. The limited river inflow, and the large surface area compared to its volume make Lake ...

Quick Search