Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

R. Sanaee[1], G.F. Oluyemi[1], M. Hossain[1], B.M. Oyeneyin[1]
[1]Robert Gordon University, Aberdeen, United Kingdom

The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of COMSOL were used in simulating a fractured core flooding test to achieve a better understanding of flow ...

Poroelasticity Benchmarking for FEM on Analytical Solutions

E. Holzbecher[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

We examine the poroelastics mode, which couples hydraulics and mechanics by some basic benchmarks. For cases with analytical solutions we check the accuracy for changing meshes and calculate the convergence rate.

The Use of COMSOL Multiphysics® Software to Explore Flooding and Rising Dampness Problems Related to Cultural Heritage

H.L. Schellen [1], A.W.M. van Schijndel [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

In The Netherlands rising dampness problems due to flooding of rivers and high groundwater levels form an essential treat for monumental buildings and heritage. A number of cases exists where rising dampness problems lead to the deterioration of wall finishes but also of valuable wall paintings in churches and castles. To explore the problem and to look for solutions like drying regimes, ...

Calibration of a Geothermal Energy Pile Model - new

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using a heat pump coupled with embedded heat exchangers. As a result, a multiphysics problem is introduced - heat ...

Non-isothermal Flow of CO2 in Injection Wells: Evaluation of Different Injection Modes

O. Silva [1],
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Injection conditions of CO2 at the wellhead may play a major role on the flow behavior through the wellbore. The density and the injection rate reached at the bottomhole are key factors affecting the performance and efficiency of CO2 geological storage. In this work, a model of non-isothermal flow of CO2 in injection wells is developed using COMSOL Multiphysics® software and used to assess ...

Application of the Focused Impedance Method (FIM) to Determine the Volume of an Object within a Volume Conductor

M. A. Kadir[1], S. P. Ahmed[2], G. D. Al Quaderi[3], R. Rahman[2], K. Siddique-e Rabbani[1]
[1]Department of Biomedical Physics & Technology, University of Dhaka, Dhaka, Bangladesh
[2]Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh
[3]Department of Physics, University of Dhaka, Dhaka, Bangladesh

Focused Impedance Method (FIM), a new technique of electrical impedance measurement having high sensitivity in the central region, can sense the change in transfer impedance of an object embedded at a shallow depth within a volume conductor of unchanging background conductivity, using electrodes at the surface. This paper presents a new method for measuring the volume of such an embedded object ...

COMSOL Implementation for Upscaling of Two-Phase Immiscible Flows in Communicating Layered Reservoirs

X. Zhang, A. Shapiro, and E.H. Stenby
Center for Energy Resources Engineering, Technical University of Denmark, Lyngby, Denmark

Waterflooding is widely used in secondary oil recovery. The physics is described by the model of two-phase flow in porous media. The aim of the present work is to implement this model in COMSOL Multiphysics and to simulate the process of waterflooding. It is analyzed in two dimensions. We use layered reservoir in our study. The numerical implementation is validated, comparing with analytical ...

Two-phase Flow Calculations in Pore Unit Cells Implementing Mixed FEM/Lattice-Boltzmann Simulators

E. D. Skouras [1][2], A. N. Kalarakis [2], M. S. Valavanides [3], V. N. Burganos [1],
[1] Foundation for Research and Technology, Hellas/Institute of Chemical Engineering Sciences, Patras, Greece
[2] Dept of Mechanical Engineering, TEI of Western Greece, Patras, Greece
[3] Dept of Civil Engineering, Applied Mechanics Laboratory, TEI of Athens, Athens, Greece

In general, macroscopic two-phase flow in porous media is a mixture of connected and disconnected oil flow. The latter is expressed as ganglion dynamics and drop traffic flow, patterns observed experimentally in pore network models [1,2] and real porous media [3,4]. This characteristic was adversely not taken into account in previous modeling approaches. The mechanistic model DeProF [5], ...

Modeling and Simulation of the Consolidation Behaviour of Cemented Paste Backfill

L. Cui [1], M. Fall [1],
[1] University of Ottawa, Ottawa, ON, Canada

In underground mining operations, the mined-out spaces (called stopes) need to be backfilled to maintain the stability of surrounding rock mass and increase the ore recovery. Cemented paste backfill (CPB), a mixture of water, binder, and tailings, has been intensively utilized in underground mining operations to fill the stopes. After preparation, the fresh CPB is transported into stopes via ...

Lithic Hypar: New Frontiers in Structural Stone Research

D. Malomo [1], V. Varano [2],
[1] DICEA, University of Rome, Italy
[2] LAMS, University of Rome, Italy

The "Lithic Hypar" research is based on the mechanical analysis of an innovative reinforced stone's structure, architecturally designed by Prof. Fallacara, University of Bari (Italy): the headquarters entrance portal of the French company SNBR (Société Nouvelle Batiment Régional) located in Troyes (France), the realization of which is planned for October 2015. The main idea of this lithic ...