Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Verification of the Numerical Simulation of Permafrost Using COMSOL Multiphysics® Software - new

E. Dagher[1], G. Su[1], T. S. Nguyen[1]
[1]Canadian Nuclear Safety Commission, Ottawa, ON, Canada

COMSOL® software was used to simulate the conductive heat transfer with phase change in the geological formations encompassed in permafrost surrounding a shallow thaw lake. The purpose of the simulation was to verify the adequacy of COMSOL to model such phenomena by comparing the COMSOL results to those obtained by another FEM model (Ling and Zhang, 2003). The graphical comparison of the ...

Full Coupling of Flow, Thermal and Mechanical Effects in COMSOL Multiphysics® for Simulation of Enhanced Geothermal Reservoirs

D. Sijacic[1], P. Fokker[1]
[1]TNO, Utrecht, The Netherlands

The effective modeling of enhanced geothermal systems (EGS) requires the coupling of geomechanics, fluid flow and thermal processes. An understanding of the complete system with these coupled processes is vital, not just for reservoir stimulation targeted at enhancing reservoir performance, but also for the understanding, prediction and prevention of induced seismicity. Thermal effects however ...

Poroelasticity Benchmarking for FEM on Analytical Solutions

E. Holzbecher[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

We examine the poroelastics mode, which couples hydraulics and mechanics by some basic benchmarks. For cases with analytical solutions we check the accuracy for changing meshes and calculate the convergence rate.

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...

Aquifer Physics Modes for Hydrogeological Modeling – an Application of the COMSOL Physics Builder

E. Holzbecher[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Although there are porous media and subsurface flow modes available in a toolbox of COMSOL Multiphysics®, some common requirements in hydrogeological models can not be easily accessed in the graphical user interface. Most crucially, there is no distinction between confined and unconfined situations for permeable layers, so called aquifers. Using the Physics Builder for such distinctions aquifer ...

Poroelastic Models of Stress Diffusion and Fault Re-Activation in Underground Injection

R. Nopper[1], J. Clark[2], C. Miller[1]
[1]DuPont Company, Wilmington, DE, USA
[2]DuPont Company, Beaumont, TX, USA

Stress and failure in the earth have long been observed to couple to hydrogeology. Poroelastic models, introduced by soil scientists, can account for strong two-way coupling between porous crustal rock formations and their pore fluids. Current efforts to provide new energy resources (water injection in EGS, enhanced oil recovery) and to reduce pollution (CO2 sequestration, deepwell disposal) ...

Investigation of Hydraulic Fracture Re-Orientation Effects in Tight Gas Reservoirs

B. Hagemann[1], J. Wegner[1], L. Ganzer[1]
[1]Clausthal University of Technology, Clausthal-Zellerfeld, Germany

In tight gas formations where the low matrix permeability prevents successful and economic production rates, hydraulic fracturing is required to produce a well at economic rates. As production from the well and its initial fracture declines, re-fracturing treatments are required to accelerate recovery. The orientation of the following hydraulic fracture depends on the actual stress-state of the ...

Estimation of Hydraulic Conductivity for a Heterogeneous Unsaturated Soil Using Electrical Resistivity and Level-Set Methods - new

T. K. Chou[1], M. Chouteau[1], J. S. Dubé[2]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]École de Technologie Supérieure, Montréal, QC, Canada

The estimation of the soil saturated hydraulic conductivity (Ks) is crucial in understanding water flow and transport of contaminants. There are many hydrological techniques available in determining this parameter (constant head method, in-situ soil analysis, etc...). While these techniques can provide quality data points, they are often limited by sparse data sampling and scale. Therefore ...

Submarine Gas Hydrate Reservoir Simulations - A Gas/Liquid Fluid Flow Model for Gas Hydrate Containing Sediments - new

S. Schlüter[1], T. Hennig[1], G. Janicki[1], G. Deerberg[1]
[1]Fraunhofer UMSICHT, Oberhausen, Germany

In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This idea is supported by the fact, that CO2 hydrates are more stable than methane hydrates at certain conditions. The potential of producing methane by depressurization and/or by injecting CO2 is studied in the frame of the research project SUGAR. ...

Simulation of Deep Geothermal Heat Production

E. Holzbecher, P. Oberdorfer, F. Maier, and Y. Jin
Georg-August Universität Göttingen
Göttingen, Germany

Geothermal heat production from deep reservoirs (5000-7000 m) is currently examined, not only in Germany. Our reference set-up consists of two pipes within a single borehole: one for pumping. We examine a design, where a single borehole splits into two legs at a certain depth. The two legs are connected by highly permeable geological, natural or artificial strata in the deep subsurface. The ...

Quick Search