Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Simulation and Experimental Validation of Direct Heating of Dhruva Fuel Rod for β Heat Treatment - new

B. Patidar, A. P. Tiwari[1], V. Patidar[1], M. M. Hussain[1], K. K. Abdulla[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashatra, India

β heat treatment of Uranium rods is carried out for randomization of oriented grains (called texture) developed during hot rolling or hot extrusion operation. During this process, Uranium rods undergo heating of up to 740 Deg C followed by water quenching. The objective of this work is to see the feasibility of direct heating technique for heat treatment application. At present, heat treatment ...

Multi-Dimensional Simulation of Flows Inside Mono and Polydisperse Packed Beds

R.G. Schunk [1], J. C. Knox [1], K. Son [1, 2], R. F. Coker [1],
[1] NASA Marshall Space Flight Center, Huntsville, AL, USA
[2] Purdue University, West Lafayette, IN, USA

An analysis to quantify the flow inside the narrow channels of an ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) adsorbent bed is presented. The CDRA contains two pelletized adsorbent beds to remove CO2 respired by the crew. Heaters and associated fins inside the adsorbent beds form many small parallel channels which are rectangular in cross section. The channels are ...


甘政涛 [1],
[1] 中国科学院力学研究所,北京,中国

基于 Level-Set 界面跟踪方法建立了激光熔覆过程的三维瞬态数值模型,研究了瞬态熔化和凝固过程中传热传质的演化规律。该模型使用 Level-Set 方法跟踪熔池气/液界面,采用焓-多孔度(enthalpy-porosity)方法得到了固/液界面之间的糊状区,并考虑了质量添加、材料熔化/凝固、热毛细效应(Marangoni效应)、浮力效应、活性元素质量传输等对熔池流动和界面的影响。通过该模型,具体分析了质量添加、力和界面平衡条件对熔池气/液界面的影响,以及由熔池温度/浓度分布引起的热毛细效应、金属材料的熔/凝过程和熔池流动形式对熔池固/液界面的影响。结果表明:熔池的气/液界面主要由力平衡条件决定,截面近似为圆弧型,其尺寸与单位时间的质量添加量相关。熔池的固/液形态由于熔池的表面温度梯度和表面活性元素含量共同引起的熔池流动方向和速度的变化,出现三种不同的类型,分别为下凹型(熔池内流) ...

Multiphysics Modelling of a Microwave Furnace for Efficient Solar Silicon Production

N. Rezaii [1], J. P. Mai [1],
[1] JPM Silicon GmbH, Braunschweig, Germany

The JPM Silicon GmbH presents a novel method for the production of solar grade silicon in the microwave oven. This method can specially reduce the energy costs and increase the efficiency of the process. A numerical model is developed which depicts the physical, chemical and electromagnetic phenomena of silicon production process. In order to increase the efficiency of the system, it is ...

Simulation of Heat and Mass Transfer During Artificial Ground Freezing in Saturated Saline Groundwater

Q. Liu [1], R. Hu [2],
[1] Geoscience Centre, University of Goettingen, Goettingen, Germany
[2] School of Earth Science and Engineering, Hohai University, Nanjing, China

With the extensive application of ground freezing method in coastal areas, the groundwater environment during ground freezing has been changed. Especially in seawater intrusion areas, groundwater salinity is high (even salinity equivalent to sea water (ca. 35g/L)). Engineering experience shows that the presence of saline groundwater will affect the formation of freezing wall. High groundwater ...

A Heat Transfer Model for Ugitech’s Continuous Casting Machine

C. Deville-Cavellin
Liquid Metal Metallurgy and Solidification department
Ugitech’s Research Center, Ugine, France

Dr. Christian Deville-Cavellin is a Research Engineer at Ugitech's Research Center, since 1995. Ugitech, member of the Schmoltz & Bickenbach group, is a stainless steel, long products producer. C. Deville-Cavellin is responsible for all research topics related to liquid metal metallurgy and solidification. He also keeps an expert role in machinability, within one of the french public ...

COMSOL-based Simulations of Criticality Excursion Transients in Fissile Solution

C. Hurt[1], P. Angelo[2], R. Pevey[1]
[1]Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA
[2]Y-12 National Security Complex, Safety Analysis Engineering, Oak Ridge, TN, USA

Simulation of criticality accident transients offers the ability to confirm understanding of critical configurations, bound accident scenarios and aid comprehensive emergency planning. Computational ability to recreate excursion power histories in fissile solution is sought due to the predominance of solutions in process criticality accidents. Applicable solution transient physics methodologies ...

Numerical Analysis of the Thermal Resistance of a Multi-Layer Reflective Insulation Material Enclosed by Cavities under Varied Angles

R.S. Pelzers[1], A.W.M. van Schijndel[2]
[1]Former student Building Physics, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands
[2]Chair Building Physics, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands

A numerical analysis on the thermal performance of a sample, consisting of two cavities surrounding a Multi-Layer Reflective Insulation (MLRI) material, under various angles and for downward and upward heat flows was performed. The sample reached high thermal resistance values when placed (nearly) horizontal under an upward heat flux, while at different angles and heat flux directions the ...

Development of a RheoDSC, an Instrument for Simultaneous Rheological and Calorimetric Measurements

L. Van Lokeren [1], R. Verhelle [1], C. Block [1], P. Van Puyvelde [2], G. Van Assche [1]
[1] Vrije Universiteit Brussel, Brussels, Belgium
[2] Catholic University of Leuven, Leuven, Belgium

Transformations in polymers, such as polymerisation, melting/crystallization, and phase separation/remixing, are associated with changes in both rheological and thermal properties. To permit simultaneous calorimetric and rheometric measurements, the RheoDSC was developed. The RheoDSC combines two commercial instruments, a TA Instruments Q2000 DSC and a TA Instruments AR-G2 dynamic rheometer. A ...

Modelling Reservoir Stimulation in Enhanced Geothermal Systems

G. Perillo[1], G. De Natale[2], M.G. Di Giuseppe[2], A. Troiano[2], C. Troise[2]
[1]University of Naples Parthenope, Italy
[2]INGV - Osservatorio Vesuviano, Naples, Italy

Fluid injection in deep wells is a basic procedure in geothermal permeability enhancement. The retrieved changes of Pressure and Temperature are subsequently considered as sources of incremental stress and strain changes, using the elastic model from COMSOL Multiphysics®, which are then converted to Coulomb stress changes on favoured faults, taking into account also the background regional ...