Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

Heat Transfer and Phase Changex

Study of Energy Transfer Mechanism for a Synchrotron X-ray Gas Absorber with COMSOL Multiphysics

A. Martín Ortega [1], Y. Dabin [1], T. Minea [2], A. Lacoste [3]
[1] ESRF, Grenoble, France
[2] LPGP, Université Paris-Sud XI, Orsay, France
[3] LPSC, Université Joseph Fourier, Grenoble, France

The high power of X-ray beam delivered by synchrotrons and free electron lasers, up to 240 W/mm2, requires heat load management solutions to obtain the best performance from the optical elements which will shape the beam for its use in the experimental stations [1]. One solution is the ... Mehr lesen

Transient Model of a Fluorine Electrolysis Cell

J. Vukasin [1], I. Crassous [1], B. Morel [1], J. Sanchez-Marcano [2], P. Namy [3]
[1] HRP, AREVA NC, France
[2] Institut Européen des Membranes - CNRS, France
[3] Simtec, France

In the nuclear fuel cycle, fluorine is produced by the electrolysis of the molten salt KF-2HF. It is a complex process to study since hydrofluoric acid and fluorine are hazardous and highly corrosive. A 3D-model of a lab-scale fluorine electrolysis cell has been developed to increase ... Mehr lesen

Using Multiphysics for Detecting Atmospheric Ice Through MuVi Graphene - Atmospheric Icing Sensor

U. N. Mughal [1],
[1] Narvik University College, Norway

This paper is a preliminary design study to develop a hybrid atmospheric icing sensor which have an adequate potential to detect an icing event, icing type and icing rate together with icing load. The physics to detect icing event and icing type have been numerically understood using ... Mehr lesen

Coupled Heat and Mass Transfer Model to Simulate Hygrothermal Behavior of Bio-Based Materials

M. Asli [1], F. Brachelet [1], A. Chauchois [1], E. Antczak [1]
[1] Université d'Artois, Béthune, France

This poster presents a numerical modeling approach for hygrothermal behavior of bio-based materials. The mathematical model describes the heat and moisture transfer through a wall of bio-based materials. The studied wall is subjected to both convective heat transfer and moisture flux ... Mehr lesen

Using COMSOL Multiphysics to Model Crust Development at the Surface of Whole Beef Meat Subjected to Hot Air Jet

J. Sicard [1], S. Portanguen [1], C. Chevarin [1], A. Kondjoyan [1]
[1] INRA Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, FRANCE

Crust which develops at the surface of meat leads to reactions which affect food color, flavor and safety. Whole pieces of meat are only contaminated by microorganisms at their surface. Thus intense thermal treatment can inactivate pathogenic bacteria; however the associated high ... Mehr lesen

Thermal Conductivity of Composites: How COMSOL Revealed an Omission in a Classical Paper

P. Berne [1],
[1] University Grenoble Alpes, Grenoble, France

The initial motivation for this work was to explore the relationship between the shape of particles and the thermal conductivity of nanofluids or nanocomposites containing them. Since the possibility for manufacturing exotically-shaped particles is ever growing, it was thought useful to ... Mehr lesen

COMSOL Multiphysics® for Building Energy Simulation (BES) Using BESTEST Criteria

A.W.M. (J.) Van Schijndel [1], D. P. M. Jacobs [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

Pioneering Computational Models for the Built Environment Energy performance is becoming more important in the build environment. With better insulated buildings, the possibility of moisture problems and thermal bridges increases. There for, it is not only important to determine the ... Mehr lesen

Temperature Propagation during Cell Stacking Processes for Lithium-Ion Cells

G. Liebig [1], P. Bohn [2], L. Komsiyska [1], S. Vasić [1]
[1] NEXT ENERGY EWE-Forschungszentrum, Oldenburg, Germany
[2] AUDI AG, Ingolstadt, Germany

A thermo-physical 3D model of a commercial Li-ion battery was developed and validated. Visualization of the temperature distributions inside a Li-ion cell during cell stacking processes were simulated. Critical temperature levels depend on position, duration and intensity of the thermal ... Mehr lesen

Modeling of Transport Phenomena in Laser Welding of Steels

A. Métais [1], S. Matteï [2], I. Tomashchuk [2], S. Gaied [1]
[1] ArcelorMittal, Montataire, France
[2] Laboratoire Interdisciplinaire Carnot de Bourgogne, Université Bourgogne Franche Comté, France

Laser Welded Blank solutions enable to reduce vehicles weight and to optimize their crash performances by means of simultaneous tuning of different grades and thicknesses. The present work aims to characterize numerically and experimentally materials mixing during laser welding. For ... Mehr lesen

Simulation of a Downsized FDM Nozzle

T. M. Hofstaetter [1],
[1] Vienna University of Technology, Vienna, Austria

This document discusses the simulation of a downsized nozzle for fused deposition modelling (FDM), namely the E3D HotEnd Extruder with manufactured diameters of 200-400 μm in the nozzle tip. The nozzle has been simulated in terms of heat transfer and fluid flowgiving an insight into the ... Mehr lesen